
ME:5160 (58:160) Intermediate Mechanics of Fluids 

Fall 2021 – HW6 Solution 

 

 

P4.2 Flow through the converging nozzle in Fig. P4.2 can be approximated by the one-dimensional 

velocity distribution 

 

 

 

 

 

 

 

 

 

 

 

(a) Find a general expression for the fluid acceleration in the nozzle. (b) For the specific case Vo 

 10 ft/s and L  6 in, compute the acceleration, in g’s, at the entrance and at the exit. 

 

 

Solution: Here we have only the single ‘one-dimensional’ convective acceleration: 
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At x  0, du/dt  400 ft/s2 (12 g’s); at x  L  0.5 ft, du/dt  1200 ft/s2 (37 g’s). Ans. (b) 
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*P4.79 Study the combined effect of the two viscous flows in Fig. 4.12. That is, find u(y) when 

the upper plate moves at speed V and there is also a constant pressure gradient (dp/dx). Is 

superposition possible? If so, explain why. Plot representative velocity profiles for (a) zero, (b) 

positive, and (c) negative pressure gradients for the same upper-wall speed V. 

 

 

Fig. 4.16 

Solution:    
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Integrate twice: 
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at y = -h: 𝑢(−ℎ) = 0    
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Combined solution is 
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The superposition is quite valid because the convective acceleration is zero, hence what remains 

is linear: p  2V. Three representative velocity profiles are plotted at right for various 

(dp/dx). 

 

 

 

 

 

 

 

 

 

 



*P4.80 An oil film drains steadily down the side of a vertical wall, as shown. After an initial 

development at the top of the wall, the film becomes independent of z and of constant thickness. 

Assume that w  w(x) only that the atmosphere offers no shear resistance to the film. (a) Solve 

Navier-Stokes for w(x). (b) Suppose that film thickness and [ w/ x] at the wall are measured. 

Find an expression which relates  to this slope [ w/ x]. 

 

 

 

 

 

Solution: First, there is no pressure gradient  p/ z because of the constant-pressure atmosphere. 

The Navier-Stokes z-component is (d2w/dx2)  g, and the solution requires w  0 at x  0 and 

(dw/dx)  0 (no shear at the film edge) at x  . The solution is: 
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The wall slope is dw/dx / , rearrange [ / | ] . (b)/wall wallg : g dw dx Ans          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



P4.88 The viscous oil in Fig. P4.88 is set into steady motion by a concentric inner cylinder 

moving axially at velocity U inside a fixed outer cylinder. Assuming constant pressure and 

density and a purely axial fluid motion, solve Eqs. (4.38) for the fluid velocity distribution vz(r). 

What are the proper boundary conditions? 

 

 

 

 

 

 

 

 

 

 

 

Fig. P4.88 

 

 

Solution: If vz  fcn(r) only, the z-momentum equation (Appendix E) reduces to: 
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The solution is vz  C1 ln(r)  C2, subject to vz(a)  U and vz(b)  0 

Solve for C1  U/ln(a/b) and C2  –C1 ln(b) 

The final solution is: .Ansz
ln(r/b)

v U
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C4.1 In a certain medical application, water at room temperature and pressure flows through a 

rectangular channel of length L  10 cm, width s  1 cm, and gap thickness 

b  0.3 mm. The volume flow is sinusoidal, with amplitude Qo  0.5 ml/s and frequency 

f  20 Hz, that is, Q  Qosin(2 f t). 

(a) Calculate the maximum Reynolds number Re  Vb/, based on maximum average velocity 

and gap thickness. Channel flow remains laminar for Re < 2000, otherwise it will be turbulent. 

Is this flow laminar or turbulent? 

(b) Assume quasi-steady flow, that is, solve as if the flow were steady at any given Q(t). Find an 

expression for streamwise velocity u as a function of y, , dp/dx, and b, where dp/dx is the 

pressure gradient required to drive the flow through the channel at flow rate Q. Also estimate the 

maximum magnitude of velocity component u. 

(c) Find an analytic expression for flow rate Q(t) as a function of dp/dx. 

(d) Estimate the wall shear stress w as a function of Q, f, , b, s, and time t. 

(e) Finally, use the given numbers to estimate the wall shear amplitude, wo, in Pa. 

Solution: (a) Maximum flow rate is the amplitude, Qo  0.5 ml/s, hence average velocity V  

Q/A: 

 

 

 

 

 

(b, c) The quasi-steady analysis is just like Eqs. (4.137-4.139) of the text, with “h” = b/2: 
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(e) For our given numerical values, the amplitude of wall shear stress is: 
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