11/8/2010

1. Summary

Total number of students	12
Attended	12
Missed	0
Number of problems	3
Average grade	75.8
Standard deviation of grades	13

2. Grade distribution

3. Comparison with past years

4. Individual problem breakdown

5. Grade distribution per problem

6. Comments

• Many students did not complete problems due to difficulty and/or time constraint

PROBLEM 1

- Some students did not neglect the inertial term
- Many students incorrectly neglected $\frac{v_r}{r^2}$ and/or $\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial v_r}{\partial r}\right)$
- Most students had difficulty substituting $v_r = f(z)/r$ into simplified PDE and solving for v_r

PROBLEM 2

- Most students had difficulty applying the moment of momentum equation
- Many students neglected the y-moment of momentum component at section 3
- Many students neglected the pressure force
- Some student did not use energy equation to calculate pressure at section 2

PROBLEM 3

- Some students incorrectly assumed friction factor is the same for all pipes
- Some students incorrectly assumed the velocity is the same for all pipes
- Some students did not assume same loss for parallel pipes A and B (i.e. $\left(h_f\right)_{A}=\left(h_f\right)_{B}$

$$\left(f\frac{L}{d}\frac{V^2}{2g}\right)_A = \left(f\frac{L}{d}\frac{V^2}{2g}\right)_B)$$