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Chapter 2: Pressure Distribution in a Fluid 
 
Pressure and pressure gradient  
 
In fluid statics, as well as in fluid 
dynamics, the forces acting on a 
portion of fluid (CV) bounded by a 
CS are of two kinds: body forces 
and surface forces. 
 
Body Forces:   act on the entire body of the fluid (force      

  per unit volume). 
 
Surface Forces:  act at the CS and are due to the  

     surrounding medium (force/unit area- 
     stress). 

 
In general the surface forces can be resolved into two 
components: one normal and one tangential to the surface.  
Considering a cubical fluid element, we see that the stress 
in a moving fluid comprises a 2nd order tensor. 

 

σxz 

σxy 
y 

x 

z 

σxx 

Face 

Direction 



ME:5160  Chapter 2 
Professor Fred Stern     Fall 2017  2 

 
















=

zzzyzx

yzyyyx

xzxyxx

ij

σσσ
σσσ
σσσ

σ  

 
Since by definition, a fluid cannot withstand a shear stress 
without moving (deformation), a stationary fluid must 
necessarily be completely free of shear stress  (σij=0,  i ≠ 
j).  The only non-zero stress is the normal stress, which is 
referred to as pressure: 
 

σii=-p 
 

 
  

i.e.  normal stress (pressure) is isotropic.  This 
can be easily seen by considering the 
equilibrium of a wedge shaped fluid element 

Or px = py = pz = pn = p   

n 

(one value at a point, 
independent of 
direction; p is a scalar) 

σn = -p, which is compressive, as it should be since 
fluid cannot withstand tension. (Sign convention 
based on the fact that p>0 and in the direction of –n) 
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Note:  For a fluid in motion, the normal stress is different 
on each face and not equal to p. 

σxx ≠ σyy ≠ σzz ≠ -p 
By convention p is defined as the average of the normal 
stresses 
                              ( )1 1

3 3xx yy zz iip σ σ σ σ= − + + = −  
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The fluid element experiences a force on it as a result of 
the fluid pressure distribution if it varies spatially.  
Consider the net force in the x direction due to p(x,t). 

 
The result will be similar for dFy and dFz; consequently, 
we conclude: 

ˆˆ ˆ
press

p p pdF i j k
x y z

 ∂ ∂ ∂
= − − − ∆∀ ∂ ∂ ∂ 

 

 
Or:  pf −∇=   force per unit volume due to p(x,t). 
 
Note: if p=constant, 0=f . 
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Equilibrium of a fluid element 
 
Consider now a fluid element which is acted upon by both 
surface forces and a body force due to gravity 

∀= dggravdF ρ  or gfgrav ρ=  (per unit volume) 

 

Application of Newton’s law yields: ∑= Fam  
( )

∑ +==

∀∑=∀

surfacefbodyffa
dfad

ρ
ρ

 per unit ∀d  

viscousfpressurefsurfacef
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−=⇒−== ˆˆ ρρ          z            g 

 (includes viscousf , since in general ij ij ijpσ δ τ= − + ) 
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For ρ, μ=constant, the viscous force will have this form (chapter 4). 
 

2a p g Vρ ρ µ= −∇ + + ∇             with  VV
t
Va ∇⋅+
∂
∂

=  

 
 

Viscous part 

inertial pressure 
gradient 

gravity viscous 
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This is called the Navier-Stokes equation and will be 
discussed further in Chapter 4.  Consider solving the N-S 
equation for p when a and V are known. 

( ) ),(2 txBVagp =∇+−=∇ µρ  
 

This is simply a first order PDE for p and can be solved 
readily.  For the general case (V and p unknown), one 
must solve the NS and continuity equations, which is a 
formidable task since the NS equations are a system of 2nd 
order nonlinear PDEs. 
We now consider the following special cases: 

 
1) Hydrostatics  ( 0==Va ) 
 
2) Rigid body translation or rotation ( 02 =∇ V ) 

 
3) Irrotational motion ( 0=×∇ V ) 
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Case (1) Hydrostatic Pressure Distribution 
 

p g g kρ ρ∇ = = −        z           g 
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liquids  ρ = constant (for one liquid) 
    p = -ρgz + constant 
 
gases  ρ = ρ(p,t) which is known from the equation  
    of state: p = ρRT  ρ = p/RT 
 

which can be integrated if T =T(z) is  
known as it is for the atmosphere. 

 
 
 
 
 

)(zT
dz

R
g

p
dp

−=



ME:5160  Chapter 2 
Professor Fred Stern     Fall 2017  8 

Manometry 
 
Manometers are devices that use liquid columns for 
measuring differences in pressure.  A general procedure 
may be followed in working all manometer problems: 
 
1.)  Start at one end (or a meniscus if the circuit is 
continuous) and write the pressure there in an appropriate 
unit or symbol if it is unknown.  
 
2.)  Add to this the change in pressure (in the same unit) 
from one meniscus to the next (plus if the next meniscus 
is lower, minus if higher). 
 
3.)  Continue until the other end of the gage (or starting 
meniscus) is reached and equate the expression to the 
pressure at that point, known or unknown. 
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Hydrostatic forces on plane surfaces 
 
The force on a body due to a pressure distribution is: 

∫−=
A

dAnpF  

 
where for a plane surface n = constant and we need only 
consider |F| noting that its direction is always towards the 

surface: | |
A

F p dA= ∫ . 

 
Consider a plane surface AB  entirely submerged in a 
liquid such that the plane of the surface intersects the free-
surface with an angle α.  The centroid of the surface is 
denoted ( yx, ). 

 
                             sinF yA pAγ α= =  
Where p  is the pressure at the centroid. 
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To find the line of action of the force which we call the 
center of pressure (xcp, ycp) we equate the moment of the 
resultant force to that of the distributed force about any 
arbitrary axis. 

2sin

cp
A

A

y F ydF

y dAγ α

=

=

∫

∫
     Note: dAydF αγ sin=  
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I  = moment of inertia WRT horizontal centroidal axis 
 sinF pA yAγ α= =  
   ( )2

sin sincpy yA y A Iγ α γ α= +  

 
Ay
Iyycp +=        

 
and similarly for xcp 
 

   where  
 
 
 
 

 
Note that the coordinate system in the text has its origin at the centroid 
and is related to the one just used by: 

( )yyyandxxx texttext −−=−=  
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Hydrostatic Forces on Curved Surfaces 
 

 
 
  

In general,     Horizontal Components: 
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F F i p n i dA
dA

F p dA

= ⋅ = − ⋅

= −

∫

∫

 


 

dAx = projection of n dA onto a plane perpendicular to x direction 
dAy = projection of n dA onto a plane perpendicular to y direction 
 
The horizontal component of force acting on a curved 
surface is equal to the force acting on a vertical projection 
of that surface including both magnitude and line of action 
and can be determined by the methods developed for plane 
surfaces. 
 



z

z z
A Az

F pn k dA p dA h dAzγ δ= − ⋅ = − = = ∀∫ ∫ ∫  

 
Where h is the depth to any element area dA of the surface. 
The vertical component of force acting on a curved surface is 
equal to the net weight of the total column of fluid directly 
above the curved surface and has a line of action through the 
centroid of the fluid volume. 
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Example   Drum Gate 
 

 
h=R-Rcosθ=R(1-cosθ) 

( )1 cos
h

p h Rγ γ θ= = −
  

sin cosn i kθ θ= − +
   
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Same force as that on projection of gate 
onto vertical plane perpendicular 
direction 
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  𝐹𝐹𝑧𝑧 = −𝛾𝛾𝛾𝛾𝑅𝑅2 ∫ (1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜋𝜋
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Another approach: 
 
𝐹𝐹1 = 𝛾𝛾𝛾𝛾 �𝑅𝑅2 −

1
4
𝜋𝜋𝑅𝑅2� 

      = 𝛾𝛾𝛾𝛾𝑅𝑅2 �1 −
1
4
𝜋𝜋� 

 

𝐹𝐹2 = 𝛾𝛾𝛾𝛾
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𝛾𝛾𝛾𝛾𝛾𝛾𝑅𝑅2

2
 

 
 
 

Net weight of water above curved surface 
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Hydrostatic Forces in Layered Fluids 
See textbook 2.7 
 
Buoyancy and Stability 
 

Archimedes Principle 
 

)1()2( VFVFBF −=  

= fluid weight above 2ABC – 
fluid weight above 1ADC 

 
= weight of fluid equivalent to the body volume 
 
 
In general, FB = ρg∀  (∀= submerged volume). 
 
The line of action is through the centroid of the displaced 
volume, which is called the center of buoyancy. 
 
  



ME:5160  Chapter 2 
Professor Fred Stern     Fall 2017  15 

Example: Floating body in heave motion 
 
 
 
 
 
 
 
 
           
 
Weight of the block  0
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W Lb hg mgρ γ= = = ∀  where 0∀  is 

displaced water volume by the block and γ  is the specific 
weight of the liquid.                                    
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Instantaneous displaced water volume: 
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..

0wpm y A yγ+ =  

                  
..

0wpA
y y

m
γ

+ =  
                
                 cos sinn ny A t B tω ω= +   
   Use initial condition (

. .

0 00,t y y y y= = = ) to determine A 
and B: 

                       

.

0
0 cos sinn n

n

yy y t tω ω
ω

= +  

Where  

                             
wp

n

A
m

γ
ω =  

 

     period           
2 2

wp

mT
A

π π
ω γ

= =                          Spar Buoy 

 
T is tuned to decrease response to ambient waves: we can 
increase T by increasing block mass m and/or decreasing 
waterline area wpA . 
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Stability of Immersed and Floating Bodies 
 
Here we’ll consider transverse stability.  In actual applications 
both transverse and longitudinal stability are important. 
 
Immersed Bodies 

 
 
Static equilibrium requires:  ∑ =∑= 0Mand0Fv  
 
∑M = 0 requires that the centers of gravity and buoyancy 
coincide, i.e., C = G and body is neutrally stable 
 
If C is above G, then the body is stable (righting moment when 
heeled) 
 
If G is above C, then the body is unstable (heeling moment 
when heeled) 
 
 
 
 
 

Stable Neutral Unstable 
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Floating Bodies 
 
For a floating body the situation is slightly more complicated 
since the center of buoyancy will generally shift when the body 
is rotated depending upon the shape of the body and the position 
in which it is floating. 
 

     Positive GM      Negative GM  
 
The center of buoyancy (centroid of the displaced volume) shifts 
laterally to the right for the case shown because part of the 
original buoyant volume AOB is transferred to a new buoyant 
volume EOD. 
 
The point of intersection of the lines of action of the buoyant 
force before and after heel is called the metacenter M and the 
distance GM is called the metacentric height.  If GM is positive, 
that is, if M is above G, then the ship is stable; however, if GM 
is negative, the ship is unstable. 
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α = small heel angle 

CCx ′=  = lateral displacement 
  of C 

C = center of buoyancy 
i.e., centroid of displaced  
volume V 

 
Solve for GM:  find x  using 
(1) basic definition for centroid of V; and 
(2) trigonometry 
                 Fig. 3.17 
 
(1) Basic definition of centroid of volume V 
       

∫ ∑ ∆== ii VxVxdVx  moment about centerplane 
 

Vx  = moment V before heel – moment of VAOB  
+ moment of VEOD 

  = 0 due to symmetry of  
   original V about y axis 
   i.e., ship centerplane 
  
 
xV ( x)dV xdV

AOB EOD
=− − +∫ ∫   tan α = y/x 

       dV = ydA = x tan α dA 
2 2xV x tan dA x tan dA

AOB EOD
= α + α∫ ∫  
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∫α= dAxtanVx 2  
  ship waterplane area 
 
   moment of inertia of ship waterplane  
   about z axis O-O; i.e., IOO 
 
IOO = moment of inertia of waterplane  
     area about centerplane axis 
 
(2) Trigonometry 

α=
α

==′

α=

tanCM
V

ItanxCC

ItanVx

OO

OO
 

 
  CM = IOO / V 
 
  GM = CM – CG 
 

  GM = CG
V

IOO −    

 
GM > 0  Stable 
 
GM < 0  Unstable 
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Note: recall that dFM o ⋅= , 
where d is the perpendicular 
distance from O to the line of 
action of F . 
 
      

∆=
∆=

θsinGM
GZM G  

Roll: The rotation of a ship about the longitudinal axis  
  through the center of gravity. 
 
Consider symmetrical ship heeled to a very small angle θ.  
Solve for the subsequent motion due only to hydrostatic 
and gravitational forces. 
 

 
 

( ) ∀−= gijF b ρθθ ˆsinˆcos  
bg FrM ×=  

 
( ) ( )
( )
( )

kGM

kGMGC

kCCGC

ijiCCjGCM g

ˆsin

ˆsin

ˆcossin

ˆsinˆcosˆˆ

∆=

∆+−=

∆′+−=

−∆×′+−=

θ

θ

θθ

θθ

   

O 
F 

( ∀gρ = Δ) 

 

 

d  CM 
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∑ −=
..
θIM G    

 
 I = mass moment of inertia about long axis through G 
..
θ = angular acceleration 
 

 
 
 
 
 
 
 

 

m
Ik =  definition of radius of gyration 

 

m
Ik =2   Imk =2   

2k
gGM

I
GM

=
∆  

 
The solution to this equation is,  

ttt n

n

o
no ω

ω
θωθθ sin
.

cos)( +=  

where  oθ = the initial heel angle 
   

nω  = natural frequency 

  2

gGM
k

=   
k

gGM
=  

 
 

0 for no initial 
velocity 

..
sin 0

..
: 0

I GM
GMfor small
I

GM g GM mgGM
I I I

θ θ

θ θ θ

ρ

+ ∆ =
∆

+ =

∆ ∀
= =
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Simple (undamped) harmonic oscillation: 
 
 The period of the motion is 

n

T
ω
π2

=  
gGM

kT π2
=  

 
 Note that large GM decreases the period of roll, 
which would make for an uncomfortable boat ride (high 
frequency oscillation). 
 
 Earlier we found that GM should be positive if a ship 
is to have transverse stability and, generally speaking, the 
stability is increased for larger positive GM.  However, 
the present example shows that one encounters a “design 
tradeoff” since large GM decreases the period of roll, 
which makes for an uncomfortable ride. 
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Parametric Roll: 
 
The periodicity of the encounter wave causes variations of 
the metacentric height i.e. GM=GM (t). Therefore: 

..
( ) 0I GM tθ θ+ ∆ =  

 

0 1Assuming ( ) cos( ) :GM t GM GM tω= +  

( )0 1

..
cos( ) 0I GM GM tθ ω θ+ ∆ + = ⇒  

( )2 2
..

cos( ) 0n n eC tθ ω ω ω θ+ + =  

where 0 21

0

; ; ; ; and encounter wave freq.n e

gGM GMC mg I mk
k GM

ω ω= = ∆ = = =    
 
By changing of variables ( etτ ω= ): 

( )
..

( ) 1 cos ( ) 0Cθ τ δ τ θ τ+ + =   and  
2

2
n

e

ωδ
ω

=  

This ordinary 2nd order differential equation where the restoring moment varies 
sinusoidally, is known as the Mathieu equation. This equation gives unbounded 
solution (i.e. it is unstable) when   

22

2

2 1 0,1,2,3,..
2

n

e

n nωδ
ω

+ = = = 
 

 

For the principle parametric roll resonance, n=0   i.e. 
2 22 2 2e n n e

e n

T T
T T
π πω ω= = × ⇒ =  
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Case (2) Rigid Body Translation or Rotation 
 

In rigid body motion, all particles are in combined 
translation and/or rotation and there is no relative motion 
between particles; consequently, there are no strains or 
strain rates and the viscous term drops out of the N-S 
equation ( )02 =∇ Vµ . 

 
( )agp −=∇ ρ  
 

from which we see that p∇  acts in the direction of ( )ag − , 
and lines of constant pressure must be perpendicular to 
this direction (by definition, f∇  is perpendicular to f = 
constant). 

 

Rigid body of 
fluid translating 
or rotating 
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The general case of rigid body translation/rotation is as 
shown.  If the center of rotation is at O where 0VV = , the 
velocity of any arbitrary point P is: 

 
00 rVV ×Ω+=  

 
where Ω  = the angular velocity vector 
 
and the acceleration is: 
 


( )




321

00
0 r

dt
dr

dt
Vd

a
dt
Vd

×
Ω

+×Ω×Ω+==  

 
1 = acceleration of O 
 
2 = centripetal acceleration of P relative to O 
 
3  = linear acceleration of P due to Ω 
 
Usually, all these terms are not present.  In fact, fluids can 
rarely move in rigid body motion unless restrained by 
confining walls. 
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1.)  Uniform Linear Acceleration 
   
   
   
   
   
                                   
 
 
                                                              

p=constant  
( ) =−=∇ agp ρ  Constant 

 
 

     x
p a
x

ρ∂
= −

∂           

     1. 0xa <        p  increase in +x 
     2. 0xa >       p  decrease in +x 

 
( )z

p g a
z

ρ∂
= − +

∂      

1. 0za >                     p  decrease in +z 
2. gaanda zz << 0   p decrease in +z but slower than g 

3. 0 | |z za and a g< >    p  increase in +z 

( )[ ]^^

iakag xz ++−= ρ
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unit vector in the direction of p∇ : 
 

( ) 

( )
1

2 2 2
| |

z x

z x

g a k a ips p
g a a

+ +∇= ==∇
 + + 


    

 
lines of constant pressure are perpendicular to p∇ . 

 

                      
 

 ( )

( )
1

22 2

x z

x z

a k g a i
n s j

a g a

− +
= × =

 + + 




   

unit vector in direction of p=constant 
 
angle between n  and x axes: 
 

)(
tan 1

z

x

ag
a
+

= −θ  

 
In general the pressure variation with depth is greater than 
in ordinary hydrostatics; that is: 
 

1
2 2 2( )x z

dp p s a g a
ds

G

ρ  = ∇ ⋅ = + + 


   which is > ρg 

 

pressuregageGs
Gsp
ρ
ρ

=
+= constant  
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2). Rigid Body Rotation 
 
Consider a cylindrical tank of liquid rotating at a constant 
rate Ω = Ω k : 
 

( )agp −=∇ ρ  
 

( )

rer

ra
^

2

0

Ω−=

×Ω×Ω=
 

 
( ) rerkgagp ˆˆ 2Ω+−=−=∇ ρρρ  

 

i.e.   2p r
r

ρ∂
= Ω

∂   
p g
z

ρ∂
= −

∂  
and 

czfrp ++Ω= )(
2

22ρ    gfpz ρ−== '  

          Cgzzf +−= ρ)(  
 

The constant is determined by specifying the pressure at 
one point; say, p = p0 at (r,z) = (0,0). 

22
0 2

Ω+−= rgzpp ρρ  
(Note: Pressure is linear in z and parabolic in r) 

 
 

Constant
2

22 +−Ω= gzrp ρρ
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Curves of constant pressure are given by: 
 

2
22

0

2
bra

g
r

g
ppz +=

Ω
+

−
=

ρ
 

 
which are paraboloids of revolution, concave upward, 
with their minimum points on the axis of rotation. 
 
The unit vector in the direction of p∇  is: 

[ ] 2/1222

2

)()(
ˆˆ

ˆ
Ω+

Ω+−
=

rg
erkgs r

ρρ
ρρ

 

 
2tan dz g slope of srdr

θ = = −
Ω

  
 

r
g

z
r

drdz
g

ln
22

=
Ω

−→=
Ω

−  

i.e. 






 Ω
−=

g
zCr

2

1 exp  equation of p∇  surfaces 

The position of the free surface is found, as it is for linear 
acceleration, by conserving the volume of fluid.   

 

θ 

s  

r 

z 



ME:5160  Chapter 2 
Professor Fred Stern     Fall 2017  31 

Case (3) Pressure Distribution in Irrotational Flow; 
Bernoulli Equation 
 
Navier-Stokes: 

[ ])()()(

)(ˆ)( 22

VVzpVV
t
V

VzpVkgpa

×∇×∇−⋅∇∇++−∇=



 ∇⋅+
∂
∂

∇++−∇=∇+−−∇=

µγρ

µγµρρ

  

Viscous term=0 for ρ=constant and ω=0, i.e., Potential flow 
solutions also solutions NS under such conditions! 
 

1. Assuming inviscid flow: µ=0 
Using vector identity 𝑉𝑉 ⋅ ∇𝑉𝑉 = 1

2
∇𝑉𝑉 ⋅ 𝑉𝑉 − 𝑉𝑉 × �∇ × 𝑉𝑉� 

 

𝜌𝜌 �𝜕𝜕𝑉𝑉
𝜕𝜕𝜕𝜕

+ �1
2
∇𝑉𝑉 ⋅ 𝑉𝑉 − 𝑉𝑉 × �∇ × 𝑉𝑉��� = −∇(p + γz) Euler Equation 

 
 

2. Assuming inviscid and incompressible flow: µ=0, 
ρ=constant 

 

VVVVgzpV
t
V

⋅=×=







++∇+

∂
∂ 2

2

2
ω

ρ    (𝜔𝜔 ≠ 0) 
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3. Assuming inviscid, incompressible and steady flow: µ=0, 
ρ=constant, 0=

∂
∂
t  

 

gzpVB

VB

++=

×=∇

ρ

ω
2

2
 

 
Consider:  
 

B∇ perpendicular B= constant 
 

ω×V    perpendicular V and ω 
 

Therefore, B=constant contains streamlines and vortex 
lines: 
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4. Assuming inviscid, incompressible, steady and irrotational 
flow: µ=0, ρ=constant, 0=

∂
∂
t , ω=0 

 

0=∇B  B= constant (everywhere same constant) 

 
5. Unsteady inviscid, incompressible, and irrotational flow: 
µ=0, ρ=constant, ω=0 
 

)(
2

0
2

2

tBgzp
t

gzp
t

V
V

=++
∇⋅∇

+
∂
∂

=







++

∇⋅∇
+

∂
∂

∇

∇⋅∇=

∇=

ρ
ϕϕϕ

ρ
ϕϕϕ

ϕϕ

ϕ

 

B(t)= time dependent constant 
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Larger speed/density or smaller R require larger pressure 
gradient or elevation gradient normal to streamline. 
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Flow Patterns: Streamlines, Streaklines, Pathlines 
 

1) A streamline is a line everywhere tangent to the 
velocity vector at a given instant. 

2) A pathline is the actual path traveled by a given fluid 
particle. 

                     
 
3) A streakline is the locus of particles which have earlier 

passed through a particular point. 

 
Note: 
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1. For steady flow, all 3 coincide. 
2. For unsteady flow, ψ(t) pattern changes with time, 

whereas pathlines and streaklines are generated as 
the passage of time. 

 
Streamline 
 
By definition we must have 0=× drV  which upon 
expansion yields the equation of the streamlines for a given 
time 1tt =  

ds
w
dz

v
dy

u
dx

===          s= integration parameter 
 
So if (u,v,w) known, integrate with respect to s for t=t1 with 
IC (x0,y0,z0,t1) at s=0 and then eliminate s.  
 
Pathline 
 
The pathline is defined by integration of the relationship 
between velocity and displacement. 

w
dt
dzv

dt
dyu

dt
dx

===          
Integrate u,v,w with respect to t using IC ( 0

,
0

,
0

,
0

tzyx ) then 
eliminate t. 
 
 
 
Streakline 
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To find the streakline, use the integrated result for the 
pathline retaining time as a parameter. Now, find the 
integration constant which causes the pathline to pass 
through ( 000 ,, zyx ) for a sequence of times t<ξ . Then 
eliminate ξ . 
 
Example: an idealized  velocity distribution is given 
by: 
 

0      
21

      
1

=
+

=
+

= w
t

yv
t

xu  
 
calculate and plot: 1) the streamlines 2) the pathlines 3) the 
streaklines which pass through (

0
,

0
,

0
zyx ) at t=0. 

 
1.) First, note that since w=0 there is no motion in the 

z direction and the flow is 2-D 

02
       

01
      :)

0
,

0
(at         0

)
21

exp(
2

      )
1

exp(
1

21
       

1

yCxCyxs
t

sCy
t

sCx

t
y

ds
dy

t
x

ds
dx

===
+

=
+

=

+
=

+
=

 

 
and eliminating s 
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t
tnn

x
xyy

y
yt

x
xts

21
1     e      wher)

0
(

0

0
ln)21(

0
ln)1(

+
+

==

+=+=

 

This is the equation of the streamlines which pass 
through ( 00 , yx ) for all times t. 

 
2.) To find the pathlines we integrate  

02
      

01
    :)

0
,

0
(),(      0

2
1

)21(
2

    )1(
1

21
      

1

yCxCyxyxt

tCytCx

t
y

dt
dy

t
x

dt
dx

====

+=+=

+
=

+
=

 

 
now eliminate t between the equations for (x, y) 

2
1

)]1
0

(21[
0

−+=
x
xyy  

 
This is the pathline through ( 00 , yx ) at t=0 and does not 
coincide with the streamline at t=0. 
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3.) To find the streakline, we use the pathline 
equations to find the family of particles that have 
passed through the point (

0
,

0
yx ) for all times t<ξ . 

 

2
1

0

0

0

2

0

200

2
1

0
2

0
1

2
1

21

121       :0

]1))(1[(21

21)(

1))(21(
2
11)1(

)21(
          

1

)21(      )1(

−













 −+==

−++

+
=









−+=−+=

+
=

+
=

+=+=

x
x

y
yt

x
xt

t
y
y

y
yt

x
xt

yCxC

tCytCx

ξ

ξξ
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The Stream Function 
Powerful tool for 2-D flow in which V is obtained by 
differentiation of a scalar ψ  which automatically satisfies 
the continuity equation. 
 
Note for 2D flow  
∇ × 𝑉𝑉 = �

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

−
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

,
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

−
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

,
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

−
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 � = (0, 0,𝜔𝜔𝑧𝑧) 
 

  
 
boundary conditions (4 required):  

 

xyvu
xvUyu

ψψ

ψψ

−====

=−=
∞

==

0       :bodyon 

0           :infinityat 
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Irrotational Flow  
 

.      :on  

.      :on  
equation Laplacelinear order  2nd      02

constBS

constyUS

=

+
∞

=
∞

=∇

ψ

ψ
ψ

 

 

yxv
xyu

φψ

φψ

=−=

==
 

 
Ψ and φ are orthogonal. 
 

udyvdxdyydxxd

vdyudxdyydxxd

+−=+=

+=+=

ψψψ

φφφ
 

i.e. 

constdx
dyv

u

constdx
dy

=

−
=−=

=
ψ

φ

1
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Geometric Interpretation of ψ  
 
Besides its importance mathematically ψ  also has 
important geometric significance. 
 
ψ = constant = streamline 
Recall definition of a streamline: 
 

streamline a along     0   i.e.

 with    compare
0

ˆˆ           0V

=

+−=+=
=−

=

+==×

ψ

ψψψ

d

udyvdxdyydxxd
vdxudy
v
dy

u
dx

jdyidxdrdr

 

 
Or ψ =constant along a streamline and curves of constant ψ  
are the flow streamlines. If we know ψ (x, y) then we can 
plot ψ = constant curves to show streamlines. 
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Physical Interpretation 
.

ˆ ˆ ˆ ˆ      ( ).( ) 1

      

      
y x

dQ V ndA
dy dxi j i j ds

y x ds ds
dy dx

d

ψ ψ

ψ ψ

ψ

=
∂ ∂

= − − × ×
∂ ∂

= +

=

 

(note that ψ and Q have same dimensions: m3/s)  

 
i.e. change in ψd  is volume flux and across streamline 0=dQ . 

12

2

1

2

1
21 . ψψψ −=== ∫∫→ ddAnVQ  

Consider flow between two streamlines: 
 

 

(Not Streamline) 
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Incompressible Plane Flow in Polar Coordinates 

 
( ) ( )

( ) ( ) 0  :or

01
r
1 :continuity

=
∂
∂

+
∂
∂

=
∂
∂

+
∂
∂

θ

θ

θ

θ

vrv
r

v
r

rv
r

r

r

 

1say:                

1then      ( ) ( ) 0

as before     0  along a streamline  and  
volume flux  change in stream function

rv v
r r

r
r r r

d dQ d

θ
ψ ψ
θ
ψ ψ
θ θ

ψ ψ

∂ ∂
= = −

∂ ∂
∂ ∂ ∂ ∂

+ − =
∂ ∂ ∂ ∂

= =
=

 

 
Incompressible axisymmetric flow 
 

 
 

( ) ( )

ψψ

ψψ

ψψ

ddQd
rrzzr

r
rr

rrzv
zrrv

zv
zrrv

r

==

=







∂
∂

∂
∂

+







∂
∂−

∂
∂

∂
∂

=
∂
∂

−=

=
∂
∂

+
∂
∂

 and streamline a along  0  before as

0111   :then

1        1  :say

0
r
1 :continuity
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Generalization 
 
Steady plane compressible flow: 
 

streamline a isconstant  and   0  i.e.   0)(1

011 with     compare

0        Alongside

function stream flow lecompressib              :define

0)()(

===⇒+=

=+

=−

=
∂
∂

−=
∂
∂

=

=
∂
∂

+
∂
∂

ψψψ
ρ

ψψψ

ψ
ρ

ψ
ρ

ψ

ψψρψρ

ρρ

dddydxd

dxdy

vdxudy
x

v
y

u

v
y

u
x

yx

xy

 
Now: 
 

12

2

1
21 ).(

).(

ψψρ

ψρ

−==

==

∫→ dAnVm

ddAnVmd





 

Change in ψ  is equivalent to the mass flux.  
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