ME:5160 Chapter 2
Professor Fred Stern  Fall 2017 1

Chapter 2: Pressure Distribution in a Fluid

Pressure and pressure gradient 1 Af
In fluid statics, as well as in fluid ;
dynamics, the forces acting on a . d\F AC v

portion of fluid (CV) bounded bya . ev. ___,__,,

R
-.,__________ —_—

CS are of two kinds: body forces
and surface forces.

Body Forces: act on the entire body of the fluid (force
per unit volume).

Surface Forces: act at the CS and are due to the
surrounding medium (force/unit area-
stress).

In general the surface forces can be resolved into two
components: one normal and one tangential to the surface.
Considering a cubical fluid element, we see that the stress
in a moving fluid comprises a 2" order tensor.
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Since by definition, a fluid cannot withstand a shear stress
without moving (deformation), a stationary fluid must
necessarily be completely free of shear stress (ci=0, i #
J). The only non-zero stress is the normal stress, which is
referred to as pressure:

Gii=-p
on = -p, Which is compressive, as it should be since
fluid cannot withstand tension. (Sign convention

pd
/:\ :ﬂ based on the fact that p>0 and in the direction of —n)

(one value at a point,

independent of
direction; p is a scalar)

I.e. normal stress (pressure) is isotropic. This
can be easily seen by considering the
equilibrium of a wedge shaped fluid element

Or px=py=p:=pn=p
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> FX : pndAsm o— deAsm a=0

P, =Py
— pxdAsina
dA=dldy

ZFZ D - pndACOSa+ pZdACOSa—W =0

T W=pgV=yV

Where: pzdAcosa

1
W =W V = Ay — AXAz
2
AX=Alcosa Az=Alsina AyAl =dA = Ay =dA/dI

1
W = ydAcosa —dlsina
2

1
= —pndACOSa + pZdACOSa —7/dACOSaEd| sina =0

—p +p —Zdlsina:O
n 'z 2

p =p fordl->0ie.p =p =p =p
n Z n X y Z

Note: For a fluid in motion, the normal stress is different
on each face and not equal to p.

Oxx 7 Oyy # Ozz £+ -P
By convention p is defined as the average of the normal

stresses

p=-1(0y+0,+0,)=—20,
3 XX yy 2z 3
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The fluid element experiences a force on it as a result of
the fluid pressure distribution if it varies spatially.
Consider the net force in the x direction due to p(x,t).

dy

> *4( p+ a—p dxjdl dz

dz

pdydz

-~

dF = pdydz — [ p+ C:_p dx)dydz dx
ox

X
net

= 2}7 dxdydz

The result will be similar for dFy and dF;; consequently,

we conclude:
AF e —{ Py P P Q}Av
ox oy oz
Or: f=-Vp force per unit volume due to p(x,t).

Note: if p=constant, f =0.
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Equilibrium of a fluid element

Consider now a fluid element which is acted upon by both
surface forces and a body force due to gravity

ngrav =pgdv OF f = pg (perunitvolume)

Application of Newton’s law yields: ma=Y F
pdva=(Z f )dv

pa= Zi = ibody + isurface per unit dV

AR

g and g=-gk = fbody:_pg k

—h
(o
o
o

<

Il
o)

1Esurface =1 pressure * T viscous

(includes iviscous’ since in general o, =—ps; +7;)
3 Viscous part
f pressure — -vp
2 2 2
oV 0°V 0%V 2
f . =U —+—F+—F |=uV°V
—Vviscous [ 8x2 6y2 622 ]

For p, u=constant, the viscous force will have this form (chapter 4).

pa=-Vp+pg+uVV g=%—\ti+y-w

inertial  pressure gravity viscous
gradient
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This is called the Navier-Stokes equation and will be
discussed further in Chapter 4. Consider solving the N-S
equation for p when a and V are known.

Vp = p(g-a)+ uV4V = B(x.t)

This is simply a first order PDE for p and can be solved
readily. For the general case (V and p unknown), one
must solve the NS and continuity equations, which is a
formidable task since the NS equations are a system of 2"
order nonlinear PDEs.

We now consider the following special cases:

1) Hydrostatics (a=V =0)
2) Rigid body translation or rotation (v2v =0)

3) Irrotational motion (vxv =0)

Vx(Vxa)=V(V-a)-V2a
vectorivdentity

if p = constant

——

VxV =0 = Vz\i =0 = Euler equation = | = Bernoulli equation

also,
VxV =0 =V =Vep &if p=const. =>V°p=0
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Case (1) Hydrostatic Pressure Distribution

Vp=pg=-pgk zt |g

=~ constant near earth's surface r0

liquids -> p = constant (for one liquid)
P = -pgz + constant

gases =2 p=p(p,t) which is known from the equation
of state: p = pRT = p =p/RT

dp_ g dz  which can be integrated if T =T(z) is

P RT(z) known as it is for the atmosphere.
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Manometry

Manometers are devices that use liquid columns for
measuring differences in pressure. A general procedure
may be followed in working all manometer problems:

1.) Start at one end (or a meniscus if the circuit is
continuous) and write the pressure there in an appropriate
unit or symbol if it is unknown.

2.) Add to this the change in pressure (in the same unit)
from one meniscus to the next (plus if the next meniscus
Is lower, minus if higher).

3.) Continue until the other end of the gage (or starting

meniscus) Is reached and equate the expression to the
pressure at that point, known or unknown.

EX..-\_,*.&_ 1.3

)ﬁo\* Cl}f{i"_—%‘\ - f\} k% Pr":"-s\: ’Pﬂ
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Hydrostatic forces on plane surfaces

The force on a body due to a pressure distribution is:
F=-]pndA
A

where for a plane surface n = constant and we need only
consider |F| noting that its direction is always towards the

surface: |E|:,[ pdA
A

Consider a plane surface AB entirely submerged in a
liquid such that the plane of the surface intersects the free-
surface with an angle a. The centroid of the surface is
denoted (x, y).

2 o %
—_—, . - * -
AF= P AR P ; g \
=¥ y " . P
YA L4f S\ Y A
P , x
F = Tamma Sga{\’-\. = Bupind 3
- L ‘ .
T A (&= “?‘53“\ T
b R Y ?
{ o} w’“"_} \"‘i/ ,
<« R ‘J
» \Kb?a "\411\\_ 'fjj
PR

F =ysinayA=pA

Where P is the pressure at the centroid.
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To find the line of action of the force which we call the
center of pressure (Xcp, Yep) We equate the moment of the
resultant force to that of the distributed force about any
arbitrary axis.
Yoo F :Jde
:7sinaf JdA Note: dF = A SIn adA
ijdA = IO — moment of Inertia about O -0
A
~V2A+1
I = moment of inertia WRT horizontal centroidal axis
=  F=pA=ysin ayA

> Y, sin ayA= ysin a(§2A+I_)

>y =y+

i
YA

and similarly for xcp

X F =[xdF where I, = product of inertia

Txy Ixyzlxy+xyA

X =——+X
p yA

Note that the coordinate system in the text has its origin at the centroid
and is related to the one just used by:

X_ =X—X and y = —(y - 9)
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Hydrostatic Forces on Curved Surfaces

: \7?

'\ —s hé;‘_—“
In general, Horizontal Components:
EZ—IdeA F_Fl_—jpnldA
A dA(
Fy = _I P dAy
A

dAx = projection of n dA onto a plane perpendicular to x direction
dAy = projection of n dA onto a plane perpendicular to y direction

The horizontal component of force acting on a curved
surface is equal to the force acting on a vertical projection
of that surface including both magnitude and line of action
and can be determined by the methods developed for plane
surfaces.

Fzz—j pg-l?dA:—j pdAZ:y_fhdAz: v
A, Az

Where h is the depth to any element area dA of the surface.
The vertical component of force acting on a curved surface is
equal to the net weight of the total column of fluid directly
above the curved surface and has a line of action through the
centroid of the fluid volume.
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Example Drum Gate

1%

Waew 22

h=R-Rcos0=R(1-cos0)
p=yh=yR(1-cos0)

—
n = —sin Gi + cos Ok
dA=IRdé#

F = —jﬁ(l—cos@)(—sin Hiﬂ+cosa2)ﬂqg
0 \6 E dA
= F, = AR*[(L-cos@)sin &6

0

)

Fi

=R [ cosd|, += 00529\ j:ZyIR2
— 7,R Same force as that on projection of gate
L= onto vertical plane perpendicular
p A direction
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F, = —yIR? f:(l — cos0)cosOdo

— ip2(cing 8 _ 1 &
= —yIR (sm@ . 4sm26)0

2 2

s TR? :||>
= _leZ — =yl (—> = yV Net weight of water above curved surface

Another approach:

1
F, =yl lRZ — ZnRZ]

IR? ll -
= ——7
v 4
TR?
Fz - le + Fl
yITR?
F == FZ - Fl == 2
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Hydrostatic Forces in Layered Fluids
See textbook 2.7

—
AV 4

it |
i

Buoyancy and Stability

Archimedes Principle

Y

VI YT

= fluid weight above 2asc —
fluid weight above 1apc

= weight of fluid equivalent to the body volume

In general, Fg = pgv (v = submerged volume).

The line of action is through the centroid of the displaced
volume, which is called the center of buoyancy.
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Example: Floating body in heave motion

A

yT f% T

= ? Pb ' h
d:draf B l

< b >

Weight of the block W = LRRG =Mg =7V, \\here v, is

p

displaced water volume by the block and 7 is the specific
weight of the liquid.

W =B = p,Lbhg = p,Lbdg = d =22 h =S;h
&0 s o

pb:pw:d:h

0, > p,, -d>h sink

P, < p, -d<h floating
Instantaneous displaced water volume:

V:vo_yp\/vp

ZFV :my:B_W:W_Wo
=7 AwY
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my+yA,Y =0
7 A

m

y+ y=0

y=Acosw.t+Bsinw,t

Use initial condition (t=0, y=y, y=y,) to determine A
and B:

y:yﬂmsaﬁ+ziﬂnqﬁ
a,

Y - 7 A
" m
2 m
period T="2=2r Spar Buoy
@ 7 Avp

T iIs tuned to decrease response to ambient waves: we can
Increase T by increasing block mass m and/or decreasing

waterline area Aup .

Where
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Stability of Immersed and Floating Bodies

Here we’ll consider transverse stability. In actual applications
both transverse and longitudinal stability are important.

Immersed Bodies

Center of
Duoyancy

FIGURE 3.15
Conditions of stability
for immersed bodies. Weight

faj Stable. (b} Neutral. .
fc) Unstable. {a (b} ¢

Stable Neutral Unstable

Static equilibrium requires: > F, =0 and > M =0

>.M = 0 requires that the centers of gravity and buoyancy
coincide, i.e., C = G and body is neutrally stable

If C is above G, then the body is stable (righting moment when
heeled)

If G is above C, then the body is unstable (heeling moment
when heeled)
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Floating Bodies

For a floating body the situation is slightly more complicated
since the center of buoyancy will generally shift when the body
Is rotated depending upon the shape of the body and the position
In which it is floating.

Positive GM Negative GM

The center of buoyancy (centroid of the displaced volume) shifts
laterally to the right for the case shown because part of the
original buoyant volume AOB is transferred to a new buoyant
volume EOD.

The point of intersection of the lines of action of the buoyant
force before and after heel is called the metacenter M and the
distance GM is called the metacentric height. If GM is positive,
that is, if M is above G, then the ship is stable; however, if GM
IS negative, the ship is unstable.
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a = small heel angle : e

X = CC' = lateral displacement ' '
of C trodrthese

C = center of buoyancy
I.e., centroid of displaced
volume M

Solve for GM: find x using
(1) basic definition for centroid of }; and
(2) trigonometry

(1) Basic definition of centroid of volume W
XV = [xdV =¥ x;AV.  moment about centerplane

xV = moment V before heel — moment of Maos
— —~— — + moment of Meop
= 0 due to symmetry of
original V about y axis
.e., ship centerplane

XM=— [ (=X)dV+ [ XdV tan o = y/X
AOB EOD
dM = ydA = x tan oo dA

XN-= j x2tanadA+ j x2tanoch
AOB EOD
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XV = tan o X “dA
ship waterplane area

— _/
~

moment of inertia of ship waterplane
about z axis O-0O; i.e., loo

loo = moment of inertia of waterplane
area about centerplane axis

(2) Trigonometry
cc'=x=""oo _ cpmtane
CM = |oo/V
GM=CM-CG
GM = IO—O—CG
V
GM>0 Stable

GM<0 Unstable
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Roll:  The rotation of a ship about the longitudinal axis
through the center of gravity.

Consider symmetrical ship heeled to a very small angle 0.
Solve for the subsequent motion due only to hydrostatic
and gravitational forces.

SN

F, = (coséi —sin QiA)ng (,or= A)
Mg :£XEb

Note: recall that M, = |F|-d
where d is the perpendicular

( GCj + CC’f)x A(coséi —sin Hiﬂ)

:( Gcgin9+cc'cosg)A12 distance from O to the line of

= (- GC +CM )sinaak action of F. ’

= GM sin Ak M. —GZ A O‘LIZ“
=GMsin@ A
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M, =-16

| = mass moment of inertia about long axis through G
0= angular acceleration

| 6+ AGM sin@ =0
AGM

for small 0: 6+ =0

AGM  pgvVGM  mgGM
I I I

kK= %n definition of radius of gyration

AGM  gGM
2_| 2 _
k_%n mk* = | Eiar”

The solution to this equation is,

0 for no initial

«9(t)=9003wt+‘9° Si :
° " velocity

a)n

where @ = the initial heel angle

@ = natural frequency

_ |9GM J9GM
k? - k
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Simple (undamped) harmonic oscillation:

i . 27 27K
The period of the motion is T="" T=
P @  gGM

Note that large GM decreases the period of roll,
which would make for an uncomfortable boat ride (high
frequency oscillation).

Earlier we found that GM should be positive if a ship
IS to have transverse stability and, generally speaking, the
stability is increased for larger positive GM. However,
the present example shows that one encounters a “design
tradeoff” since large GM decreases the period of roll,
which makes for an uncomfortable ride.
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Parametric Roll:

The periodicity of the encounter wave causes variations of
the metacentric height i.e. GM=GM (t). Therefore:

| 6+ AGM ()0 =0
Assuming GM (t) =GM, + GM, cos(at) :
| 6+ A(GM, +GM, cos(at))§ =0 =

O+ (a),f +Caw’ COS(a)et))H =0

JIGM, co GM,

; ;. A=mg; | =mk?; and @, =encounter wave freq.
k GM,

where o, =

By changing of variables (7 = @,t ):

2
w

0(r)+5(1+Ccos7)0(r) =0 and 5=2
a)e

This ordinary 2nd order differential equation where the restoring moment varies

sinusoidally, is known as the Mathieu equation. This equation gives unbounded

solution (i.e. it is unstable) when

2 2
5:“’—2:(2””} N=012,3,.
a)e
For the principle parametric roll resonance, n=0 i.e.

W, =20, 2—7[:2><2—7[:>Tn = 2T,
T T

e n
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Case (2) Rigid Body Translation or Rotation

In rigid body motion, all particles are in combined
translation and/or rotation and there is no relative motion
between particles; consequently, there are no strains or
strain rates and the viscous term drops out of the N-S
equation (u.vzv =o).

Vp=plg-a)

from which we see that Vp acts in the direction of (g - a),

and lines of constant pressure must be perpendicular to
this direction (by definition, Vf is perpendicular to f =
constant).

% |
\3 -
Rigid body of
.3 , ™ fluid translating
: or rotating
4 A
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The general case of rigid body translation/rotation is as
shown. If the center of rotation is at O where v =v,, the

velocity of any arbitrary point P is:

V=V,+Qxr,

where Q = the angular velocity vector

and the acceleration is:

dv.
W _ a2t gx(axr,)+ Bxr,
dt _dt dt
{ 2 3
1 = acceleration of O
2 = centripetal acceleration of P relative to O
3 = linear acceleration of P due to Q

Usually, all these terms are not present. In fact, fluids can
rarely move in rigid body motion unless restrained by
confining walls.
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1.) Uniform Linear Acceleration

i= C‘E"J\M

p=constant
Vp = p(g —a)= Constant
— —pl(g +a) K+ a ||
op
— =—pa
o L£d,
1. a, <0 P increase in +X

2.8,>0  p decrease in +x

op

—=—p(g+a

> p(g+a,)

1.a,>0 P decrease in +z

2. a,<0and \az\ <0 Pdecrease in +z but slower than g

3.a,<0 and |a,|>g P increasein +z
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unit vector in the direction of Vp:

gzia/ ::(g+aJk+ag
| VPl [( !

2 2 |2
g+a,) +ax}

lines of constant pressure are perpendicular to Vp.

axlz—(g+az)f

[axz+(g +az)1;

unit vector in direction of p=constant

nN=Sxj=

angle between n and x axes:

0 =tan"—

(9+a)

In general the pressure variation with depth is greater than
In ordinary hydrostatics; that is:

dp B A_ 2 2 S . .
E_Vp-s—,o[ax +(9v+az) ]21 which 1s > pg
G

p = pGs + constant
= pGs gage pressure
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2). Rigid Body Rotation

Consider a cylindrical tank of liquid rotating at a constant
rate Q = Qk-

Vp=plg-a) G s
a=0x(Qxr)
=-rQ)’ e,

Vp=plg -a)=—pgk + pr%,

.e. %ZPVQZ %=—pg

and

p:§r2§r+f(z)+c p,=f'=—pg
f(z)=—pgz+C

p =’2)r2£22 — pgz + Constant

The constant is determined by specifying the pressure at
one point; say, p = po at (r,z) = (0,0).
P=p, — P9z +§r2§22

(Note: Pressure is linear in z and parabolic in r)
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Curves of constant pressure are given by:

_p-p re
9 29

Z =a+br’

which are paraboloids of revolution, concave upward,
with their minimum points on the axis of rotation.

The unit vector in the direction of vp is:
— pgk + prQ?%.
[(09)? + (pr2y?]

S =

z

v

tanez%:—%gz slope of s 6

0o

0?2 dr 0%z
2 dz=— -
g r g

=Inr

l.e. r=C, exp(— %} equation of Vp surfaces

The position of the free surface is found, as it is for linear
acceleration, by conserving the volume of fluid.
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Case (3) Pressure Distribution in Irrotational Flow:
Bernoulli Equation

Navier-Stokes:
pa=-V(p)—pgk + uV?V = -V (p+ 7z) + uV?V

p{% +\L-V\4 =-V(p+72)+ u[V(V-V) = Vx(VxV)]

Viscous term=0 for p=constant and ©=0, i.e., Potential flow
solutions also solutions NS under such conditions!

1. Assuming inviscid flow: u=0
Using vector identity V - VV = %VK V=V X (V X K)

p % + (% VWV -V x(Vx K))] = —V(p + yz) Euler Equation

2. Assuming inviscid and incompressible flow: u=0,
p=constant
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3. Assuming inviscid, incompressible and steady flow: u=0,
_ 0 _
p=constant, —=0

VB =V xw
B= !2 + P + 0z

2 p
Consider:
VB perpendicular B= constant
V x@ perpendicular V and ®

Therefore, B=constant contains streamlines and vortex
lines:

\
(1
P f Py R 4 £
.f_-_?-‘ # 2 i B ] ) s ""‘”{ {‘!, i 4
o - o oo )
g. ¢t 3 g
—'} \:l.- s s i b
: W T
)‘{ 3 o | "
w2 o} e
3 N, - Y
", .l-\.\
\
N
4y
e
,‘:_'" s
1 — T . [ t‘d £ Ay v meevel
N A
i - 8 ".4
"
P
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_r.r .
B= 5T ;+ & =constant along streamlines

and vortex lines.

4. Assuming inviscid, incompressible, steady and irrotational
flow: n=0, p=constant, §=0,@:O

VB =0 B= constant (everywhere same constant)

5. Unsteady inviscid, incompressible, and irrotational flow:
u=0, p=constant, ®=0

V=Vo

V?=Vgp-Vo

\% 8¢+V¢-V¢+£+ gz =0
ot 2 yo,

8¢+V¢-V¢+£+ gz = B(t)

ot 2 o,

B(t)= time dependent constant
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)2
-5 __

R normal a, due to streamline curvature

Chapter 2
Professor Fred Stern  Fall 2017
Alternate derivation using stream line coordinates:
' P
rflm I~ \J
o — N
L o
= vs(s, t)es +tve = vs(s, t)es
. 0 . 0
V=e —+e
os on
DV or oV oV ov. . oe ov
g=—==-—=+V .Vl =—=+y —==[—¢ +v, —]+v [
Dt ot ot oS ot ot oS
TS R 1 . W
2, e
a " -
2 —-:j? T =5 e dlk": A fﬁl@
. = e
__U_C% e *fg e ??2‘ t’\& \M: =@ Semea
__________ St
R L s s 25 Aas o
Telefon: 7764 81 00 Booking telefon: 77 848200 Telafax: 77 64 82 40 T TR
E£-mail: booking@tfds.no  Intermstt: www hurigruien.com e L 7Y
{&=
ov, ov, _ . 00 ..
a=[—+v,—le +[-v,———le,
ot os ot R
ov, o ) R
e =local a, 1n direction of flow
ov, o6
Py §=1ocal a, normal to flow
o, . | .
v e =convective a; due to convergence/divergence
of streamlines
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Euler Equation
pa=-V(p+yz)

Steady flow s equation:

ov c
PV, qs ———(p+yz)
os §
A v?
Bl ign=0
os 2 p

1.e., B=constant along streamline
Steady flow n equation:

oV’ 5
—pP——=——(p+y2)
R cn

1,'52 p .
_,[ Ed n+ » + 8% =constant across streamline

Larger speed/density or smaller R require larger pressure
gradient or elevation gradient normal to streamline.
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Flow Patterns: Streamlines, Streaklines, Pathlines

1)A streamline is a line everywhere tangent to the
velocity vector at a given instant.

2) A pathline is the actual path traveled by a given fluid
particle.

Fluid particle at 1 = 1,4

Pathline ;'
o % ’

¢ b/ ¢
“ ar’
- .'
Fluid particle at 7 =1,,4

Fluid particle at some
intermediate time

3) A streakline is the locus of particles which have earlier
passed through a particular point.

l Dve or smoke

Injected fluid particle

Streakline

Note:
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1. For steady flow, all 3 coincide.

2. For unsteady flow, y(t) pattern changes with time,
whereas pathlines and streaklines are generated as
the passage of time.

Streamline

By definition we must have V xdr=0 which upon

expansion yields the equation of the streamlines for a given

time t=t

dx dy dz
u - \" B W B

ds s= integration parameter

So if (u,v,w) known, integrate with respect to s for t=t; with
IC (Xo,Y0,20,1) at s=0 and then eliminate s.

Pathline

The pathline is defined by integration of the relationship
between velocity and displacement.

dx dy dz

—=U —=V —=W

dt dt dt

Integrate u,v,w with respect to t using IC (xo,yo,zo,to) then

eliminate t.

Streakline
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To find the streakline, use the integrated result for the
pathline retaining time as a parameter. Now, find the
Integration constant which causes the pathline to pass
through ( %..Y,.Z,) for a sequence of times &<t. Then
eliminate ¢.

Example:  anidealized velocity distribution is given
by:

X y y

1+t 1+ 2t

u

calculate and plot: 1) the streamlines 2) the pathlines 3) the
streaklines which pass through (xO, yO,zO) at t=0.

1.)  First, note that since w=0 there is no motion in the

z direction and the flow is 2-D
dx X dy vy

ds 1+t ds 1+2t

S S
X =C exp(— =C_exp(——
1 p(1+t) y 2 IO(1+ 2t)

s=0 at (xo,yo): C1:XO C2=y0

and eliminating s
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s=(1+1)In-2 = (1+2t)In-
%0 Yo
1+t

y = yo(i)n where n=

142
x0 + 2t

This is the equation of the streamlines which pass

through (%,,Y,) for all times t.
M M -

§ &

t=0* 2- :.i_
v R

= "\
oo et 2 o (A \Ux
Ne 1«\

15° ' hy‘-ﬂww

5(0 x
2.)  To find the pathlines we integrate
dx X dy vy

dt 1+t dt  1+2t
x:C1(1+t) y:C2(1+2t)%
t=0 (x,y)=(x0,y0): ClzxO (:2=yO

now eliminate t between the equations for (X, y)

= yeat oy 2
0 XO

This is the pathline through (x,.y,) at t=0 and does not
coincide with the streamline at t=0.
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3.) To find the streakline, we use the pathline
equations to find the family of particles that have
passed through the point (xO,yO) for all times &<t.

x=C,(1+t) y=C,(1+2t)?

C1= X, sz Yo :
1+§ (1+2§)E
§=(1+t)ﬁ—1=l{(l+2t)(£)2—1}
X 2 y
1+ 2t

(1) = .
Yoo 14 A0+ 1)) -1

t=0: l{uz(ﬁ—lﬂz
Y, X
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The Stream Function
Powerful tool for 2-D flow in which V is obtained by
differentiation of a scalar v which automatically satisfies

the continuity equation.

Note for 2D flow
va_(aw Jv du oJw 0dv au)_ 0.0
~\dy 0z'0z ox’'dox dy =000,

Continuity: u,+v, =0

say: u=y, and v=-y

then: Hi(t,zf!,) + i(—w‘. )=y _—w, =0 Dby definition!
ox oy . :
V=yi-y,j
curlV = f\?({)z = —ﬁt‘?zw ((yz =V, —u, =—Y, -y, = —V:yx)
DV .
curi(pﬁ ==V(p+yz)+uvV-V)
peurl(NVV)=uVieurlV  Steady constant property flow

bl A

plu—+v i)(—évzw) = uV* (—:{'Vzw)
ox Oy

oy 0 _, oy 0 _, . : .
pl——Vy)-——Vyw) | =uVy single scalar equation, but 4th order!
oy Ox ox Oy

boundary conditions (4 required):

at infinity : u:y/yzuoo V=—Wx=0 \\
onbody: u=v=0=y =-y e \\

T—
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Irrotational Flow

sz// =0  2nd order linear Laplace equation

on SOO L = Uooy+const.

on SB . w =const.

U=y, =9
V=—V/X=¢y

Y and ¢ are orthogonal.
do = ¢de + ¢ydy = udx + vdy

dy = y/de + v,//ydy = —vdx + udy

. dy u -1
ie. — =——=
dxlp = const  V dy
dXly, = const

C G
FM o L B ‘a"‘"‘pck/ r // (ch-,....i.“‘_\

0 & T —— Wy

i : g‘ﬂ'-... s Y ® ¥,

P r—‘
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Geometric Interpretation of

Besides its importance mathematically , also has
Important geometric significance.

v = constant = streamline
Recall definition of a streamline:

Vxdr=0 dr = dxi + dyj
dx

_dy
u v
udy —vdx =0

comparewith dy = WXdX + x//ydy = —vdx + udy
l.e. dy =0 alongastreamline
Or , =constant along a streamline and curves of constant ,

are the flow streamlines. If we know y (X, y) then we can
plot » = constant curves to show streamlines.
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Physical Interpretation
dQ =V.ndA

"aw '\al// dy" dx -
=(l—]—).(—1 —— dsx1
( oy Jax)(ds ds 1) dsx

s,r,.‘._ cun~re_ (Not Streamline)

A=z AS x -
l.e. change in dw is volume flux and across streamline dQ =0 .

2 2
Q.. =[V.ndA=[dy =, -y,
1 1

Consider flow between two streamlines:

\7&1, 77-\
| Flovr
\AQ =df-= V. wdb "
K\J Q_£ = V .k '
a—:n__,_.ﬂ e ' = \Ih C{\Qi R
. ] A* —1‘—— 2 e e
Ve Nz K of Yy al

i Koy €0 =) U<
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Incompressible Plane Flow in Polar Coordinates

v

=]
f—v

. .. 10 10
continuity : —(rv,_ )+ ———(v, )=0

0 0
or: —(rv, )J+—I(v,)=0

. _ 1oy _ Oy
AP, =
then i(rla_l//)+i(_6_l//):o

or rof o060 or

as before dy =0 along a streamline and dQ =dy
volume flux = change in stream function

Incompressible axisymmetric flow

Yo O ammedaea

,(
T .

continuity :lg(rvr )+ g(vz )z 0

r or 0z
say:v —_19% , _1ov
r r oz Z ror
then : 1a(r_la"”j+6(&3"”):0
I or r oz oz\r or

as before dy =0 along astreamlineand dQ = dy
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Generalization

Steady plane compressible flow:

ai(pu)i(pv):o
X

oy
define: pu= 2—‘5 oV = —%—l)/(/ w = compressible flow stream function

Alongside i udy —vdx=0

compare with l:,uydy + lt//xdx =0
P P

dl//=l//XdX+Wydy:>£(dl//)=0 l.e. dy =0 andy =constant is a streamline
o

Now:
dm = p(V.n)dA=dy

2
m,_, = jp(\Lﬂ)dA =V, V¥,
1

Change in y Is equivalent to the mass flux.
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