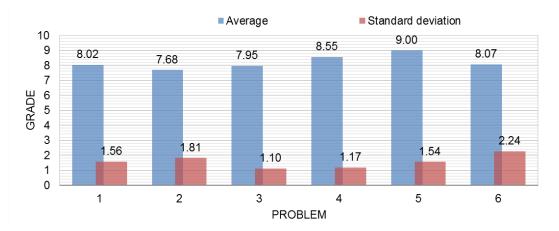
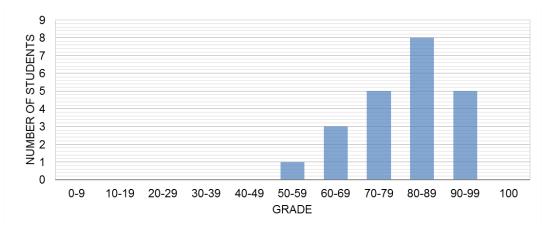

2016 Final Exam – Report

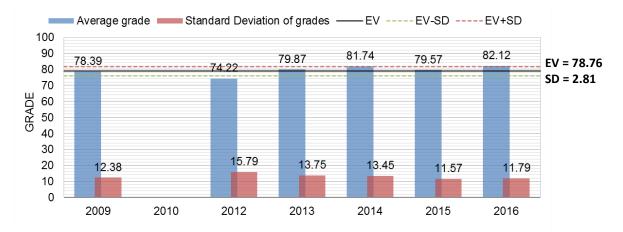

<u>General</u>

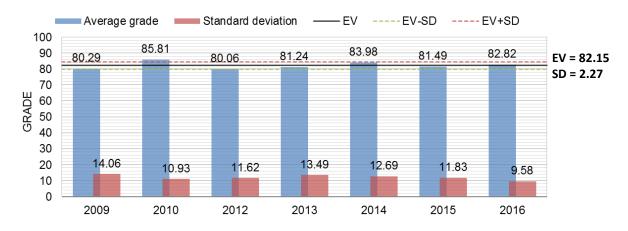
Total number of students	23
Attended	22
Missed	1
Number of problems	6
Average grade	82.12
Standard deviation of grades	11.79



Individual problem breakdown

Problem	1	2	3	4	5	6
Average grade	8.02	7.68	7.95	8.55	9.00	8.07
Standard deviation of grades	1.56	1.81	1.10	1.17	1.54	2.24


Grade distribution


Grade distribution per problem

Comparison with past years

Comparison of Exam1, Exam2, and Final average with past years

Comments

OVERALL

• All students followed the rules for the formula sheet.

PROBLEM 1

- Some students did not integrate continuity equation over y.
- Some students used equations did not use the momentum equation to get the force. Instead, they used equations from boundary layer theory and did not integrate over *x*.
- Some students when using the momentum equation to get the force did not squared u(y).
- Some students using momentum equation to get the force did not integrate the momentum over *y*.

PROBLEM 2

- Few students did not make correct assumptions when reducing the governing equation.
- Some students integrated reduced governing equation obtained from (a) to get the C₁ and C₂ by comparing with the given u(y) equation.
- Some students did not make correct assumption for boundary conditions.

PROBLEM 3

- Some students did not apply the balance of forces on the sphere (W = B + D).
- Many students, when applying the balance of forces, did not include the buoyancy.
- Few students did not check the Re to confirm laminar/turbulent conditions.
- Some students made mistakes in calculating the prototype velocity from the Re similarity or did not calculate it at all.
- Some students did not impose constant drag coefficient between model and prototype for calculating the drag.

PROBLEM 4

- Some students did not apply the energy equation to determine the velocity in part (a).
- Few students that applied the energy equation did not simplify it correctly.
- Many students wrote down the continuity equation but made mistakes in deriving the other two equations needed for the system, namely, the head loss along the A-B branch and the head loss along the A-C branch (deriving from the energy equation).

PROBLEM 5

- Some students did not properly re-arrange the C_f equation to get the velocity U.
- Some students did not calculate *D* or used a wrong area when calculating the *D* force from *C*_{*D*}.

PROBLEM 6

- Some students did not add up the stream functions for the two basic flows.
- Some students did not calculate the velocity components to set as zero at the stagnation point.
- Some students used wrong values for applying stagnation point.