HW 2 - Report

General

Total number of students	42
Number of submitted HW	41
Number of not submitted HW	1
Number of problems	$7+1$
Average grade (w/o bonus)	97.64
Standard deviation of grades	4.02
Undergraduate (wl bonus)	
Average grade	106.7
Standard deviation of grades	8.56
Graduate	
Average grade	97.25
Standard deviation of grades	3.02

Individual problem breakdown

Problem	1.41	1.70	1.73	1.75	2.44	2.64	2.87	C1.4
Average grade	9.95	9.73	9.76	9.94	9.54	9.67	9.76	8.95^{*}
Standard deviation of grades	0.19	0.67	0.62	0.32	0.67	1.42	1.56	1.85^{*}

*Based on the number of students who attempted to solve the problem

Grade distribution

Comments

- Some students did not answer which type of pressure drop is measured by the manometer (P2.44).
- Some students did not multiply the shear stress (F/L2) by the area in order to find the shear force (F). They used the shear stress as a force (P1.41 and C1.4).
- Some students used directly the Navier-stokes equation to find the viscosity instead of a force balance between weight of fluid and shear force (C1.4).
- 72% of the undergraduate students attempted to solve the comprehensive problem, generally with good results.

