2015 Final – Report

<u>General</u>

Total number of students	41
Attended	41
Missed	0
Number of problems	6
Average grade	79.57
Standard deviation of grades	11.57

Individual problem breakdown

Problem	1	2	3	4	5	6
Average grade	7.46	8.23	9.00	8.23	7.45	7.37
Standard deviation of grades	2.01	1.58	1.02	1.37	3.00	1.70

Grade distribution per problem

Comparison with past years

Comparison with Exam 1 and 2

Correlation between grades and number of missed quizzes

*The number in **red** is the number of students that missed the corresponding number of quizzes. **The average grade is based on exam and quiz grades.

Common mistakes

PROBLEM 1:

- Many students didn't break down the momentum at the exit into two parts, which should be considered as the wake part and the outer side of the wake.
- Many students put wrong sign for the force acting on the body, which should be pointing in a direction that reduces the inlet momentum.
- Some students used energy balance equation to get the wake velocity, which does not give correct answer because wake exists.
- Few students used only pressure force to get the force acting on the body.

PROBLEM 2:

- Some students didn't know how to solve the ODE.
- Few students failed in simplify correctly the momentum equation leaving the pressure gradient term or not substituting $v = -v_0$.
- Few students used wrong a boundary condition for $y \rightarrow \infty$: the put $u = -v_0$ instead of u = U.

PROBLEM 3:

- Some students calculated velocity in one pipe and assumed it was same for other pipe.
- Some students did not make correct assumptions to simplify energy equation.

PROBLEM 4:

- Many students didn't calculate displacement thickness, which can be derived by dividing the boundary layer thickness by eight.
- Many students didn't calculating the scoop height of the viscous flow, which can be obtained by adding up the displacement thickness with the scoop height of the inviscid flow.

• Some students didn't use 6m, which is the length between the beginning of the flow and the inlet of the scoop, when they calculate the drag.

PROBLEM 5:

- Some students did not solve the problem using moment balance.
- Some students used incorrect drag coefficient.
- Some students used incorrect moment arms.

PROBLEM 6:

- Some students didn't understand that the bump is modeled by a streamline of the flow around a cylinder. They considered the bump as an additional body and compute the total stream function as $\Psi = \Psi_{cylinder} + \Psi_{bump}$.
- Some students computed the radial component of velocity instead of the θ-component, or tried to use both (part b).