THE UNIVERSITY OF IOWA Department of Mechanical Engineering

Fracture Mechanics	Homework #6	Assigned: April 20, 2020
ME:5159	Total Points: 10	Due: April 27, 2020

Problem 1:

As an engineer at a Boiling Water Reactor plant, you are required to conduct an LBB evaluation for a pipe. From preliminary design requirements, a pipe with outer diameter $D_o = 711.2$ mm and wall thickness t = 33.867 mm is chosen. The material has been identified to be A515 Gr60 carbon steel with the quasi-static mechanical properties at 288 C (550 F) as following:

Elastic modulus (E)	=	179.2 GPa
Poisson's ratio (v)	=	0.3
Yield strength (S_y)	=	231 MPa
Ultimate strength (S_u)	=	544 MPa

From material characterization data, it has also been determined that:

- $\epsilon/\epsilon_0 = \sigma/\sigma_0 + \alpha (\sigma/\sigma_0)^n$ where: $\sigma_0 = 231$ MPa, $\alpha = 1.1$, and n = 5
- $J_R = J_{Ic} + C(\Delta a)^m$ where: $J_{Ic} = 0.195 \text{ MJ/m}^2$, C = 1, and m = 0.9

A leak-rate analysis indicates that the crack-opening-area (A_{COA}) must be at least 150 mm² to ensure a reliable leak detection using the leak-detection equipment currently installed at the plant. For the loads, assume that the pipe is under pure bending with

Normal operating moment $(M_N) = 1.00$ MN-m N+SSE moment $(M_{N+SSE}) = 2.25$ MN-m

Using the GE/EPRI method and appropriate influence functions (e.g., tabular values for COA and analytical equations for *J*-integral), determine if the pipe will satisfy the LBB criterion for NRC licensing. Comments.