THE UNIVERSITY OF IOWA Department of Mechanical Engineering

Fracture Mechanics
Homework \#5
ME:5159
Total Points: 20
Assigned: April 13, 2020
Due: April 20, 2020

Problem 1:

Consider a pipe with a circumferential through-wall crack that is subjected to pure bending, as shown in the figure below.

The pipe has outer diameter $D_{o}=457.2 \mathrm{~mm}$, wall thickness $t=21.77 \mathrm{~mm}$, and initial crack size $\theta_{0} / \pi=0.2$. The material is Type 304 stainless steel and has the stress-strain curve and J - R curve which can be conveniently modeled by Ramberg-Osgood and power-law equations:

$$
\begin{gathered}
\frac{\varepsilon}{\varepsilon_{0}}=\frac{\sigma}{\sigma_{0}}+\alpha\left(\frac{\sigma}{\sigma_{0}}\right)^{n} \text { and } \\
J_{R}=J_{I c}+C(\Delta a)^{m},
\end{gathered}
$$

respectively, where $E=182.7 \mathrm{GPa}, \sigma_{0}=155 \mathrm{MPa}, \alpha=8.1, n=3.8, J_{I C}=0.5 \mathrm{MJ} / \mathrm{m}^{2}, C=3.5$, and $m=0.5$. Also, $S_{y}=155 \mathrm{MPa}$ and $S_{u}=443 \mathrm{MPa}$.

Using the GE/EPRI EPFM method and the closed-form $F(\theta / \pi, R / t)$ and $h_{1}(\theta / \pi, n, R / t)$ functions (see Engineering Fracture Mechanics paper, Vol. 52, No. 2, 1995), calculate (1) the initiation moment M_{i} and (2) the maximum moment $M_{\text {max }}$ for this cracked pipe. Assuming that the flow stress σ_{f} is the average of yield and ultimate strengths calculate also (3) the net-section-collapse moment $M_{n s c}$ for this pipe.

Problem 2:

Consider a pipe with a circumferential, constant-depth, internal part-through surface crack of total angle 2θ and depth d, as shown in the figure (note: the crack is symmetrical about y-axis and only half of crack is shown). The pipe and crack geometry parameters are defined in the figure. The pipe is subjected to combined bending and longitudinal tension, $P=\pi R_{i}^{2} p$ with p representing the internal pipe pressure. If σ_{f} is the flow stress of the material, show that the net-section-collapse moment $M_{\text {nsc }}$ is:
(a) For $\theta<\pi-\beta$ (Entire Crack in Tension Zone),

(b) For $\theta \geq \pi-\beta$ (Part of Crack in Compression Zone),

