THE UNIVERSITY OF IOWA Department of Mechanical Engineering

Fracture Mechanics	Homework #5	Assigned: April 13, 2020
ME:5159	Total Points: 20	Due: April 20, 2020

Problem 1:

Consider a pipe with a circumferential through-wall crack that is subjected to pure bending, as shown in the figure below.

The pipe has outer diameter $D_o = 457.2$ mm, wall thickness t = 21.77 mm, and initial crack size $\theta_0/\pi = 0.2$. The material is Type 304 stainless steel and has the stress-strain curve and *J-R* curve which can be conveniently modeled by Ramberg-Osgood and power-law equations:

$$\frac{\varepsilon}{\varepsilon_0} = \frac{\sigma}{\sigma_0} + \alpha \left(\frac{\sigma}{\sigma_0}\right)^n \text{ and}$$
$$J_R = J_{Ic} + C(\Delta a)^m,$$

respectively, where E = 182.7 GPa, $\sigma_0 = 155$ MPa, $\alpha = 8.1$, n = 3.8, $J_{Ic} = 0.5$ MJ/m², C = 3.5, and m = 0.5. Also, $S_y = 155$ MPa and $S_u = 443$ MPa.

Using the GE/EPRI EPFM method and the closed-form $F(\theta/\pi,R/t)$ and $h_1(\theta/\pi,n,R/t)$ functions (see *Engineering Fracture Mechanics* paper, Vol. 52, No. 2, 1995), calculate (1) the initiation moment M_i and (2) the maximum moment M_{max} for this cracked pipe. Assuming that the flow stress σ_f is the average of yield and ultimate strengths calculate also (3) the net-section-collapse moment M_{nsc} for this pipe.

Problem 2:

Consider a pipe with a circumferential, constant-depth, internal part-through surface crack of total angle 20 and depth *d*, as shown in the figure (note: the crack is symmetrical about *y*-axis and only half of crack is shown). The pipe and crack geometry parameters are defined in the figure. The pipe is subjected to combined bending and longitudinal tension, $P = \pi R_i^2 p$ with *p* representing the internal pipe pressure. If σ_f is the flow stress of the material, show that the net-section-collapse moment M_{nsc} is:

(a) For $\theta < \pi - \beta$ (Entire Crack in Tension Zone),

(b) For $\theta \ge \pi - \beta$ (Part of Crack in Compression Zone),

