Problem 2:

From Problem 1,

$$
\begin{align*}
& \sigma_{1}=\frac{K_{I}}{\sqrt{2 \pi r}} \cos \frac{\theta}{2}\left[1+\sin \frac{\theta}{2}\right] \\
& \sigma_{2}=\frac{K_{I}}{\sqrt{2 \pi r}} \cos \frac{\theta}{2}\left[1-\sin \frac{\theta}{2}\right] \tag{10}\\
& \sigma_{3}= \begin{cases}0, & \text { plane stress } \\
v\left(\sigma_{1}+\sigma_{2}\right), & \text { plane strain }\end{cases}
\end{align*}
$$

(a) Expressions of Plastic Zone Boundary (Mode-I; Tresca)

Plane Stress

The maximum shear stress $\tau_{\max }$ is (Note, $\sigma_{1} \geq \sigma_{2} \geq \sigma_{3}$ for $0 \leq \theta \leq \pi$)

$$
\begin{equation*}
\tau_{\max }=\frac{\sigma_{1}-\sigma_{3}}{2}=\frac{1}{2} \frac{K_{I}}{\sqrt{2 \pi r}} \cos \frac{\theta}{2}\left[1+\sin \frac{\theta}{2}\right] . \tag{11}
\end{equation*}
$$

Hence, the Tresca yield criterion becomes

$$
\begin{equation*}
\tau_{\max \mid r=r_{y}}=\frac{S_{y}}{2}, \tag{12}
\end{equation*}
$$

i.e.,

$$
\begin{equation*}
\frac{1}{2} \frac{K_{I}}{\sqrt{2 \pi r_{y}}} \cos \frac{\theta}{2}\left[1+\sin \frac{\theta}{2}\right]=\frac{S_{y}}{2} \tag{13}
\end{equation*}
$$

which can be solved to obtain

$$
\begin{equation*}
r_{y}(\theta)=\frac{K_{I}{ }^{2}}{2 \pi S_{y}{ }^{2}} \cos ^{2} \frac{\theta}{2}\left[1+\sin \frac{\theta}{2}\right]^{2}, \quad 0 \leq|\theta| \leq \pi . \tag{14}
\end{equation*}
$$

Note, Equation 14 is also valid for $-\pi \leq \theta \leq 0$, as the plastic zone is symmetrical w.r.t. crack (horizontal axis) line.

Plane Strain

To obtain $\tau_{\max }$, ordering of principal stresses is important. For $0 \leq \theta \leq \pi$ and $0 \leq v \leq 0.5, \sigma_{1}$ is always the largest. However, for σ_{2} and σ_{3}, there are two possibilities, i.e.,

$$
\sigma_{1} \geq \sigma_{2} \geq \sigma_{3} \text { or } \sigma_{1} \geq \sigma_{3} \geq \sigma_{2},
$$

depending on the value of the Poisson's ratio. Hence,

$$
\tau_{\max }=\left\{\begin{array}{ll}
\frac{\sigma_{1}-\sigma_{3}}{2}=\frac{\sigma_{1}(1-v)-v \sigma_{2}}{2}, & \text { if } \sigma_{1} \geq \sigma_{2} \geq \sigma_{3} \tag{15}\\
\frac{\sigma_{1}-\sigma_{2}}{2}, & \text { if } \sigma_{1} \geq \sigma_{3} \geq \sigma_{2}
\end{array} .\right.
$$

The Tresca yield criterion is

$$
\tau_{\max }=\left\{\begin{array}{ll}
\frac{\sigma_{1}-\sigma_{3}}{2}=\frac{\sigma_{1}(1-v)-v \sigma_{2}}{2}, & \text { if } \sigma_{1} \geq \sigma_{2} \geq \sigma_{3} \tag{16}\\
\frac{\sigma_{1}-\sigma_{2}}{2}, & \text { if } \sigma_{1} \geq \sigma_{3} \geq \sigma_{2}
\end{array}=\frac{S_{y}}{2} .\right.
$$

which can be solved to obtain

$$
r_{y}(\theta)=\left\{\begin{array}{ll}
\frac{K_{I}{ }^{2}}{2 \pi S_{y}{ }^{2}} \cos ^{2} \frac{\theta}{2}\left[(1-2 v)+\sin \frac{\theta}{2}\right]^{2}, & \text { if } \sigma_{1} \geq \sigma_{2} \geq \sigma_{3} \tag{17}\\
\frac{K_{I}{ }^{2}}{2 \pi S_{y}{ }^{2}} \sin ^{2} \theta, & \text { if } \sigma_{1} \geq \sigma_{3} \geq \sigma_{2}
\end{array} .\right.
$$

or,

$$
\begin{equation*}
r_{y}(\theta)=\frac{K_{I}{ }^{2}}{\pi S_{y}{ }^{2}} \times \frac{1}{2} \max \left\{\cos ^{2} \frac{\theta}{2}\left[(1-2 v)+\sin \frac{\theta}{2}\right]^{2}, \sin ^{2} \theta\right\}, \quad 0 \leq|\theta| \leq \pi . \tag{18}
\end{equation*}
$$

Note, Equation 14 is also valid for $-\pi \leq \theta \leq 0$, as the plastic zone is symmetrical w.r.t. crack (horizontal axis) line.

