THE UNIVERSITY OF IOWA Department of Mechanical Engineering

Fracture Mechanics
Homework \#4
Assigned: March 25, 2020
Total Points: 30
Due: April 03, 2020

Problem 1:

A weightless, homogeneous, isotropic, infinite plate with a crack of length $2 a$ is subjected to a far-field applied stress σ^{∞}, as shown in the figure below. With the crack-tip A as the origin of the coordinate system, the linear-elastic crack-tip stress field (i.e., when $r \rightarrow 0$) can be obtained as

where $K_{I}=\sigma^{\infty} \sqrt{\pi a}$ is the mode-I stress intensity factor. For the plate material with uniaxial yield strength S_{y}, let $r_{y}(\theta)$ denote the plastic zone size as a function of θ. Using the linear-elastic stress field above and assuming no redistribution of stresses due to crack-tip plasticity,
(a) Determine the plastic zone size $r_{y}(\theta)$ in terms of K_{I} and S_{y} for (1) plane stress and (2) plane strain conditions.
(b) From the results of (a) and $v=1 / 3$, sketch the plastic zone boundary in terms of $r_{y}(\theta) \cos \theta /\left[K_{I}{ }^{2} /\left(\pi S_{y}{ }^{2}\right)\right]$ vs. $r_{y}(\theta) \sin \theta /\left[K_{I}{ }^{2} /\left(\pi S_{y}{ }^{2}\right)\right]$ plot at crack tip A for $0 \leq|\theta| \leq \pi$. Which stress state gives conservative prediction of the plastic zone size? Comments.

Assume von Mises yield criterion for your analysis.

Problem 2:

Solve Problem 1 assuming Tresca yield criterion. Compare results of Problems 1 and 2. Comments.

Problem 3:

Consider an uncracked, linear-elastic (E, v) specimen in plane stress, which is subject to uniaxial tensile stress of magnitude σ, as shown in the figure below. Let Γ denote a closed circular contour of radius R indicated in the figure. Confirm that the J-integral for this uncracked body is

$$
J=\int_{\Gamma}\left[W d y-\boldsymbol{T} \cdot \frac{\partial \mathbf{u}}{\partial x} d \Gamma\right]=0 .
$$

$$
\begin{aligned}
& \boldsymbol{T}=\boldsymbol{\sigma} \boldsymbol{n} \\
& \boldsymbol{\sigma}=\left[\begin{array}{lll}
\sigma_{x} & \tau_{x y} & \tau_{z x} \\
\tau_{x y} & \sigma_{y} & \tau_{y z} \\
\tau_{z x} & \tau_{y z} & \sigma_{z}
\end{array}\right] ; \quad \boldsymbol{n}=\left\{\begin{array}{l}
n_{x} \\
n_{y} \\
n_{z}
\end{array}\right\} \\
& \boldsymbol{u}=\left\{\begin{array}{l}
u_{x} \\
u_{y} \\
u_{z}
\end{array}\right\}
\end{aligned}
$$

