	THE UNIVERSITY OF IOWA Department of Mechanical Engineering	
Fracture Mechanics	Homework #4	Assigned: March 25, 2020
ME:5159	Total Points: 30	Due: April 03, 2020

Problem 1:

A weightless, homogeneous, isotropic, infinite plate with a crack of length 2a is subjected to a far-field applied stress σ^{∞} , as shown in the figure below. With the crack-tip A as the origin of the coordinate system, the linear-elastic crack-tip stress field (*i.e.*, when $r \rightarrow 0$) can be obtained as

where $K_I = \sigma^{\infty} \sqrt{\pi a}$ is the mode-I stress intensity factor. For the plate material with uniaxial yield strength S_y , let $r_y(\theta)$ denote the plastic zone size as a function of θ . Using the linear-elastic stress field above and assuming no redistribution of stresses due to crack-tip plasticity,

- (a) Determine the plastic zone size $r_y(\theta)$ in terms of K_I and S_y for (1) plane stress and (2) plane strain conditions.
- (b) From the results of (a) and v = 1/3, sketch the plastic zone boundary in terms of $r_y(\theta)\cos\theta/[K_I^2/(\pi S_y^2)]$ vs. $r_y(\theta)\sin\theta/[K_I^2/(\pi S_y^2)]$ plot at crack tip A for $0 \le |\theta| \le \pi$. Which stress state gives conservative prediction of the plastic zone size? Comments.

Assume von Mises yield criterion for your analysis.

Problem 2:

Solve Problem 1 assuming Tresca yield criterion. Compare results of Problems 1 and 2. Comments.

Problem 3:

Consider an uncracked, linear-elastic (E, v) specimen in plane stress, which is subject to uniaxial tensile stress of magnitude σ , as shown in the figure below. Let Γ denote a closed circular contour of radius R indicated in the figure. Confirm that the *J*-integral for this uncracked body is

 $T = \sigma n$

$$\boldsymbol{\sigma} = \begin{bmatrix} \boldsymbol{\sigma}_{x} & \boldsymbol{\tau}_{xy} & \boldsymbol{\tau}_{zx} \\ \boldsymbol{\tau}_{xy} & \boldsymbol{\sigma}_{y} & \boldsymbol{\tau}_{yz} \\ \boldsymbol{\tau}_{zx} & \boldsymbol{\tau}_{yz} & \boldsymbol{\sigma}_{z} \end{bmatrix}; \quad \boldsymbol{n} = \begin{cases} \boldsymbol{n}_{x} \\ \boldsymbol{n}_{y} \\ \boldsymbol{n}_{z} \end{cases}$$
$$\boldsymbol{u} = \begin{cases} \boldsymbol{u}_{x} \\ \boldsymbol{u}_{y} \\ \boldsymbol{u}_{z} \end{cases}$$