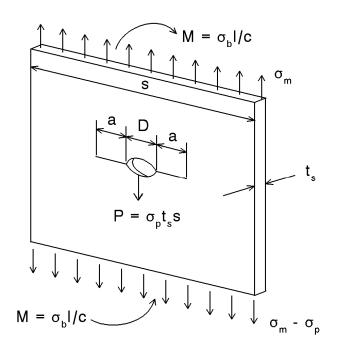
THE UNIVERSITY OF IOWA Department of Mechanical Engineering

Fracture Mechanics	Homework #3	Assigned: March 02, 2020
ME:5159	Total Points: 20	Due: March 11, 2020


The design team of an aerospace company discovered cracks, approximately 4 mm (0.16 inch) long, emanating from each side of a circular rivet hole (Hole No. 6, see figure below) in a fuselage lap joint of a Boeing 747 aircraft. The fuselage skin is 2024-T651 aluminum with a plane strain fracture toughness of 40 MPa \sqrt{m} (36.4 ksi \sqrt{in}). From linear-elastic stress analysis, the membrane stress (σ_m), the fastener load (*P*), the local bending stress (σ_b) can be related to fuselage pressure, *p*, fuselage radius, R_F , skin thickness, t_s , and hole spacing, *s* by the following equation:

$$\sigma_m(p) = \frac{A_1 p R_F}{t_s}, \quad P(p) = \frac{A_2 p R_F s}{t_s}, \quad \text{and} \quad \sigma_b(p) = \frac{A_3 p R_F}{t_s^2}$$

Following a linear-elastic finite element analysis, the proportionality factors, A_1 , A_2 , and A_3 are calculated to be 9.35×10^{-1} , 3.44×10^{-4} m, and 4.72×10^{-4} m, respectively, for Hole No. 6. Also given are the following geometric parameters:

Hole Diameter, $D = 4.572 \times 10^{-3}$ m (0.18 inch) Fuselage Radius, $R_F = 1.905$ m (75 inches) Hole Spacing, $s = 25.4 \times 10^{-3}$ m (1 inch) Skin Thickness, $t_s = 7.62 \times 10^{-4}$ m (0.03 inch) Fuselage Pressure, p = 0.0586 MPa (8.5 psi)

- 1. Are these cracks going to propagate under the given loading condition? What is the factor of safety of the current design against the propagation of these cracks?
- 2. For design of a new aircraft with the same materials and service loads (and same crack size), what changes in the skin thickness (t_s) have to be made to maintain a safety factor of 2?

