THE UNIVERSITY OF IOWA Department of Mechanical Engineering

Fracture Mechanics
 ME:5159

Homework \#2
Total Points: 20

Assigned: February 17, 2020
Due: February 28, 2020

Problem 1:

A linear-elastic finite element analysis is performed for a wide (infinite) plate with a through crack (see figure below) subjected to mode-I tensile loading. The far-field tensile stress is $\sigma^{\infty}=200 \mathrm{MPa}$ and the crack length is $2 a=50 \mathrm{~mm}$. Assuming plane strain condition, the stress normal to the crack plane $\left(\sigma_{y}\right)$ at $\theta=0$ and relative displacement $\left(u_{y}\right)$ at $\theta=\pi$ are calculated at node points near the crack tip as a function of r / a and are tabulated below. The elastic constants are as follows: $E=192 \mathrm{GPa}$ and $v=0.2$.

$\theta=0$		$\theta=\pi$	
r / a	$\sigma_{y} / \sigma^{\infty}$	r / a	$u_{y} / 2 a$
0.005	11	0.005	9.99×10^{-5}
0.01	8.07	0.01	1.41×10^{-4}
0.02	6	0.02	1.99×10^{-4}
0.04	4.54	0.04	2.80×10^{-4}
0.06	3.89	0.06	3.41×10^{-4}
0.08	3.5	0.08	3.92×10^{-4}
0.1	3.24	0.1	4.36×10^{-4}
0.15	2.83	0.15	5.27×10^{-4}
0.2	2.58	0.2	6.00×10^{-4}
0.25	2.41	0.25	6.61×10^{-4}

Using the correlation methods, one can estimate the mode-I stress-intensity factor (SIF) for this problem from the following equations:

Stress-Correlation Method (Equation 4 in Lecture No. 9)

$$
\begin{equation*}
\sigma_{y}=\frac{K_{I}}{\sqrt{2 \pi r}} \quad(\text { for } \theta=0) \tag{1}
\end{equation*}
$$

Displacement-Correlation Method (Equation 3 in Lecture No. 12)

$$
\begin{equation*}
u_{y}=\frac{K_{I}}{\mu} \sqrt{\frac{r}{2 \pi}}(2-2 v) \quad(\text { for } \theta=\pi) \tag{2}
\end{equation*}
$$

1. Using Equations 1 and 2 and the tabulated finite element results of σ_{y} and u_{y}, estimate the SIFs as a function of r / a, and denote them as $K_{I, S C}$ and $K_{I, D C}$, respectively.
2. Recall that the exact solution $\left(K_{I, E}\right)$ of SIF for this problem is (Equation 5 in Lecture No. 9)

$$
\begin{equation*}
K_{I, E}=\sigma^{\infty} \sqrt{\pi a} \tag{3}
\end{equation*}
$$

To evaluate the accuracy of stress- and displacement-correlation methods, define two error functions, such as,

$$
\begin{equation*}
e_{S C}=\frac{K_{I, E}-K_{I, S C}}{K_{I, E}} \times 100 \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
e_{D C}=\frac{K_{I, E}-K_{I, D C}}{K_{I, E}} \times 100, \tag{5}
\end{equation*}
$$

respectively. Develop plots of $e_{S C}$ and $e_{D C}$ as a function of r / a. Which correlation method gives better accuracy? Why? Comments.

Problem 2:

Consider a material which has $K_{\text {Ic }}=40 \mathrm{MPa} \sqrt{\mathrm{m}}(36.4 \mathrm{ksi} \sqrt{ } \mathrm{in})$. Each of the five specimens in Table on page 81 of Lecture No. 10 has been fabricated from this material. Assume: $B=25.4 \mathrm{~mm}(1 \mathrm{inch}), W$ $=50.8 \mathrm{~mm}$ (2 inches), $S / W=4$, and $a / W=0.5$. If failure occurs when $K_{I}>K_{I c}$, estimate the failure load for each specimen. Which specimen has the highest failure load? Which has the lowest? Comments.

