Problem 2:

The equation of an ellipse in the cartesian co-ordinate system $(x-y)$ is:

$$
\begin{equation*}
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \tag{1}
\end{equation*}
$$

Taking derivative w.r.t. x on both sides of Equation 1,

$$
\begin{equation*}
\frac{2 x}{a^{2}}+\frac{2 y}{b^{2}} \frac{d y}{d x}=0 . \tag{2}
\end{equation*}
$$

Equation 2 and its further derivative w.r.t. x yield

$$
\begin{gather*}
\frac{d y}{d x}=-\frac{b^{2}}{a^{2}} \frac{x}{y} \tag{3}\\
\frac{d^{2} y}{d x^{2}}=-\frac{b^{4}}{a^{2} y^{3}} \tag{4}
\end{gather*}
$$

Hence,

$$
\begin{align*}
\rho & =\left|\frac{\left[1+(d y / d x)^{2}\right]^{3 / 2}}{d^{2} y / d x^{2}}\right|_{x=a, y=0} \\
& =\left|\frac{\left[1+\left(-\frac{b^{2} x}{a^{2} y}\right)^{2}\right]^{3 / 2}}{-\frac{b^{4}}{a^{2} y^{3}}}\right|_{x=a, y=0} \tag{5}\\
& =\left|\frac{\left[a^{4} y^{2}+b^{4} x^{2}\right]^{3 / 2}}{a^{4} b^{4}}\right|_{x=a, y=0} \\
& =\frac{b^{2}}{a}
\end{align*}
$$

which gives

$$
\begin{equation*}
b=\sqrt{\rho a} \quad(b \text { is positive }) \tag{6}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\left.\sigma_{y}\right|_{x=a, y=0}=\sigma^{\infty}\left[1+2 \frac{a}{b}\right]=\sigma^{\infty}\left[1+2 \sqrt{\frac{a}{\rho}}\right] \tag{7}
\end{equation*}
$$

