THE UNIVERSITY OF IOWA
 Department of Mechanical Engineering

Fracture Mechanics
ME:5159

Homework \#1
Total Points: 20

Assigned: January 29, 2020
Due: February 10, 2020

Problem 1:

Consider a plate containing a circular hole of radius a, as shown in the figure below. The plate, which has geometric dimensions large enough to be idealized as an infinite plate, is subjected to a uniform far-field tensile stress σ^{∞}. In the class, we showed that the linear-elastic stress field in this body is

$$
\begin{aligned}
& \sigma_{r}=\frac{\sigma^{\infty}}{2}\left[\left(1-\frac{a^{2}}{r^{2}}\right)-\left(1+\frac{3 a^{4}}{r^{4}}-\frac{4 a^{2}}{r^{2}}\right) \cos 2 \theta\right] \\
& \sigma_{\theta}=\frac{\sigma^{\infty}}{2}\left[\left(1+\frac{a^{2}}{r^{2}}\right)+\left(1+\frac{3 a^{4}}{r^{4}}\right) \cos 2 \theta\right] \\
& \tau_{r \theta}=\frac{\sigma^{\infty}}{2}\left(1-\frac{3 a^{4}}{r^{4}}+\frac{2 a^{2}}{r^{2}}\right) \sin 2 \theta
\end{aligned}
$$

where r and θ are polar coordinates with the center of the hole as the origin.
(1) Plot σ_{r} and σ_{θ} as a function of r at the horizontal (line AB) and vertical (line CD) planes through the center of the hole.
(2) Plot σ_{θ} as a function of $\theta(0 \leq \theta \leq 2 \pi)$ at the free surface of the hole $(r=a)$.
σ^{∞}

Problem 2:

Consider an infinite plate, shown in the figure below, containing an elliptical hole with $2 a$ and $2 b$ as the lengths of its major and minor axes. If the plate is subjected to a uniform far-field tensile stress σ^{∞}, we showed in the class that the normal stress at the tip of the ellipse (i.e., at point A) under linear-elastic condition is

$$
\left.\sigma_{y}\right|_{x=a, y=0}=\sigma^{\infty}\left[1+2 \frac{a}{b}\right] .
$$

Now, let ρ denote the radius of curvature at the tip of the ellipse. Show that $\left.\sigma_{y}\right|_{x=a, y=0}$ can also be expressed by

$$
\left.\sigma_{y}\right|_{x=a, y=0}=\sigma^{\infty}\left[1+2 \sqrt{\frac{a}{\rho}}\right] .
$$

Hint: using equation of ellipse in cartesian coordinates $(x-y)$, calculate ρ from

$$
\rho=\left|\frac{\left[1+(d y / d x)^{2}\right]^{3 / 2}}{d^{2} y / d x^{2}}\right|_{x=a, y=0}
$$

σ^{∞}

