	THE UNIVERSITY OF IOWA	
	Department of Mechanical Engineering	
Fracture Mechanics	Computer Project #5	Assigned: April 27, 2020

ME:5159Total Points: 10Due: May 04, 2020Consider a center-cracked plate of the AISI 4340 steel ($S_y = 1255$ MPa; $S_u = 1296$ MPa), whichhere dimensions as follows width 2W = 76 mms length to width ratio 2W/2W = 51 and this length

has dimensions, as follows: width 2W = 76 mm; length-to-width ratio 2H/2W = 5; and thickness B = 6 mm. The plate contains an initial crack of length (half) $a_i = 1$ mm. It is subjected to tension-to-tension cyclic loading between constant values of minimum load $P_{min} = 80$ kN and maximum load $P_{max} = 240$ kN. Also, E = 207 GPa, v = 0.3, and $K_{Ic} = 130$ MPa \sqrt{m} .

Using CASCA and FRANC2D/L at CSS (ICAEN):

- (1) Develop ΔK_I vs. *a* plot for 1 mm $\leq a \leq 15.6$ mm;
- (2) Using the Paris-Erdogan equation, predict (half) crack length (*a*) as a function of applied number of cycles (*N*). How many cycles can be applied before failure occurs?

Using the Tada handbook solution of SIF (e.g., Lecture No. 10) and the Paris-Erdogan equation again, conduct life prediction analysis similar to Items 1 and 2 above. Compare your "hand" calculations with the results of FRANC2D/L.

Show all work and attach relevant snapshots. Provide comments to explain your answer.