
Page 1

Object Design

1

Software Engineering Languages and Tools
Spring 2011

Object Design

• Purpose of object design:
• Prepare for the implementation of the system model based

on design decisions
• Transform the system model (optimize it)

• Investigate alternative ways to implement the
system model

2

y
• Use design goals: minimize execution time, memory and

other measures of cost.

• Object design serves as the basis of implementation.

Application Domain vs Solution Domain Objects
Requirements Analysis (Language of Application Domain)

Subject

subscribe(subscriber)
unsubscribe(subscriber)
notify()

update()

Observer
*observers

3

Object Design (Language of Solution Domain)

ConcreteSubject

state

getState()
setState()

ConcreteObserver

observeState

update()

System Development as a Set of Activities

Analysis

System Model

Design

Application objects

Solution objects

Problem

4

Custom objects - Architecture

- Object Design

gj

Solution

Off-the-Shelf Components

Page 2

Object Design Activities

1. Object identification
• Objects from application domain
• New solution domain objects
• Off-the-shelf components
• Design patterns

2. Interface specification

5

• Describes precisely each class interface

3. Object model restructuring
• Transforms the object design model to

improve its understandability and extensibility

4. Object model optimization
• Transforms the object design model to address performance

criteria such as response
time or memory utilization.

Object Design Activities

Identifying missing
attributes & operations

Specification Reuse

Identifying components

Select Subsystem

6

Specifying constraints

Specifying types &
signatures

Identifying patterns

Adjusting patterns

Specifying visibility

Specifying exceptions

Adjusting components

Detailed View of Object Design Activities (ctd)

Restructuring Optimization

R i i i O i i i

Check Use Cases

7

Collapsing classes

Revisiting
inheritance

Optimizing access
paths

Caching complex
computations

Delaying complex
computationsRealizing associations

Finding Objects

• The hardest problems in object-oriented system
development are:

• Identifying objects
• Decomposing the system into objects

• Requirements Analysis focuses on application
domain:

8

domain:
• Object identification

• System Design (architectural design) addresses
both, application and implementation domain:

• Subsystem Identification

• Object Design focuses on implementation domain:
• Additional solution objects

Page 3

Techniques for Finding Objects

• Requirements Analysis
• Start with Use Cases. Identify participating objects
• Textual analysis of flow of events (find nouns, verbs, ...)
• Extract application domain objects by interviewing client

(application domain knowledge)
• Find objects by using general knowledge

9

• System Design
• Subsystem decomposition
• Try to identify layers and partitions

• Object Design
• Find additional objects by applying implementation domain

knowledge

Identification of new Objects during Object
Design

Incident
Report

Requirements Analysis
(Language of Application

Domain)

Incident
Report

10

Object Design
(Language of Solution

Domain)

Text box Menu Scrollbar

Other Reasons for new Objects

• The implementation of algorithms may necessitate
objects to hold values

• New low-level operations may be needed during the
decomposition of high-level operations

• Example: EraseArea() in a drawing program
• Conceptually very simple

11

• Conceptually very simple
• Implementation is complicated:

• Area represented by pixels
• We need a Repair() operation to clean up objects

partially covered by the erased area
• We need a Redraw() operation to draw objects

uncovered by the erasure
• We need a Draw() operation to erase pixels in

background color not covered by other objects.

Another Source for Finding Objects : Design
Patterns
• What are Design Patterns?

• A design pattern describes a problem which occurs over
and over again in our environment

• Then it describes the core of the solution to that problem,
in such a way that you can use the this solution a million
times over, without ever doing it the same twice

12

Page 4

Design Patterns:

• Design patterns are partial solutions to common
problems such as

• such as separating an interface from a number of alternate
implementations

• wrapping around a set of legacy classes
• protecting a caller from changes associated with specific

platforms

13

• A design pattern consists of a small number of classes
• uses delegation and inheritance
• provides a modifiable design solution

• These classes can be adapted and refined for the
specific system under construction

• Customization of the system
• Reuse of existing solutions.

Introducing the Composite Pattern
• Models tree structures that represent part-whole

hierarchies with arbitrary depth and width.
• The Composite Pattern lets client treat individual

objects and compositions of these objects uniformly

Client Component

14

Leaf

Operation()

Composite

Operation()
AddComponent

RemoveComponent()
GetChild()

Children

What is common between these definitions?

• Software System:
• Definition: A software system consists of subsystems which

are either other subsystems or collection of classes
• Composite: Subsystem (A software system consists of

subsystems which consists of subsystems , which consists of
subsystems, which...)

• Leaf node: Class

15

• Leaf node: Class

• Software Lifecycle:
• Definition: The software lifecycle consists of a set of

development activities which are either other actitivies or
collection of tasks

• Composite: Activity (The software lifecycle consists of
activities which consist of activities, which consist of
activities, which....)

• Leaf node: Task.

Modeling a Software System with a Composite
Pattern

Software
System

*
User

16

Class
Subsystem Children

Page 5

Modeling the Software Lifecycle with a
Composite Pattern

Software
Lifecycle

*
Manager

17

Task
Activity Children

The Composite Patterns models dynamic
aggregates

University School Department

Organization Chart (variable aggregate):

CarFixed Structure:

Doors Wheels Battery Engine
* *

* *

18

University School Department

Dynamic tree (recursive aggregate):

Compound
Statement

Simple
Statement

Program

Block
*

*

ree (recursive aggregate):

Composite
Pattern

Graphic Applications also use Composite
Patterns

Client Graphic

• The Graphic Class represents
both primitives (Line, Circle) and
their containers (Picture)

19

Circle

Draw()

Picture

Draw()
Add(Graphic g)

RemoveGraphic)
GetChild(int)

Children
Line

Draw()

*

Resource Fund

Equipment

Schedule

con-

Facility

*

Work

sumes

Package
*

des-

*

cribes

Organi-
zation

Structure

**

Project

Work
Breakdown

Example: A Complex Model

Composite Patterns

TaxonomiesBasic Abstractions

20

ParticipantTask

*

Activity

*

Staff

Department Team

produces

Work Set of Work
ProductProducts

*

Internal Project

respon-

Role

Deliverable

sible playsfordepends

Work Product Project Function

Outcome Work
Organizational

Unit

Page 6

Many design patterns use a
combination of inheritance and

21

combination of inheritance and
delegation

Adapter Pattern

ClientInterface

Request()

LegacyClass

ExistingRequest()

Client

22

adaptee

Adapter

Request()

Delegation
Inheritance

The adapter pattern uses inheritance as well as delegation:

- Interface inheritance is used to specify the interface of the Adapter
class.

- Delegation is used to bind the Adapter and the Adaptee

Adapter Pattern
• The adapter pattern lets classes work together that

couldn’t otherwise because of incompatible interfaces
• “Convert the interface of a class into another interface expected

by a client class.”
• Used to provide a new interface to existing legacy components

(Interface engineering, reengineering).

• Two adapter patterns:

23

p p
• Class adapter:

• Uses multiple inheritance to adapt one interface to another
• Object adapter:

• Uses single inheritance and delegation

• Object adapters are much more frequent.
• We cover only object adapters (and call them adapters).

Bridge Pattern

• Use a bridge to “decouple an abstraction from its
implementation so that the two can vary
independently” (From [Gamma et al 1995])

• Also know as a Handle/Body pattern

24

• Allows different implementations of an interface to
be decided upon dynamically.

Page 7

Bridge Pattern

25

Taxonomy in
Application Domain

Taxonomy in
Solution Domain

Why the Name Bridge Pattern?

26

Taxonomy in
Application Domain

Taxonomy in
Solution Domain

Motivation for the Bridge Pattern

• Decouples an abstraction from its implementation so
that the two can vary independently

• This allows to bind one from many different
implementations of an interface to a client
dynamically

• Design decision that can be realized any time during

27

Design decision that can be realized any time during
the runtime of the system

• However, usually the binding occurs at start up time of the
system (e.g. in the constructor of the interface class)

Using a Bridge
• The bridge pattern can be used to provide multiple

implementations under the same interface
• Interface to a component that is incomplete (only Stub code is

available), not yet known or unavailable during testing
• If seat data are required to be read, but the seat is not yet

implemented (only stub code available), or only available by a
simulation (AIM or SART), the bridge pattern can be used:

28

VIP

Seat
(in Vehicle Subsystem) SeatImplementation

Stub Code SARTSeatAIMSeat

imp

GetPosition()
SetPosition()

Page 8

Seat Implementation
public interface SeatImplementation {

public int GetPosition();
public void SetPosition(int newPosition);

}
public class Stubcode implements SeatImplementation {

public int GetPosition() {
// stub code for GetPosition

}
...

}

29

}
public class AimSeat implements SeatImplementation {

public int GetPosition() {
// actual call to the AIM simulation system

}
….

}
public class SARTSeat implements SeatImplementation {

public int GetPosition() {
// actual call to the SART seat simulator

}
...

}

Another use of the Bridge Pattern:
Support multiple Database Vendors

LeagueStoreImplementorLeagueStore
imp

Arena

30

LeagueStoreImplementorLeagueStore

XML Store
Implementor

Stub Store
Implementor

JDBC Store
Implementor

Adapter vs Bridge
• Similarities:

• Both are used to hide the details of the underlying
implementation.

• Difference:
• The adapter pattern is geared towards making unrelated

components work together
• Applied to systems after they’re designed

31

• Applied to systems after they re designed
(reengineering, interface engineering).

• “Inheritance followed by delegation”
• A bridge, on the other hand, is used up-front in a design to

let abstractions and implementations vary independently.
• Green field engineering of an “extensible system”
• New “beasts” can be added to the “object zoo”, even if

these are not known at analysis or system design time.
• “Delegation followed by inheritance”

Facade Pattern

• Provides a unified interface to a set of objects in a
subsystem.

• A facade defines a higher-level interface that makes
the subsystem easier to use (i.e. it abstracts out the
gory details)

• Facades allow us to provide a closed architecture

32

Page 9

Design Example

• Subsystem 1 can look into the
Subsystem 2 (vehicle
subsystem) and call on any
component or class operation
at will.

• This is “Ravioli Design”
• Why is this good?

Subsystem 2

Subsystem 1

33

Why is this good?
• Efficiency

• Why is this bad?
• Can’t expect the caller to

understand how the
subsystem works or the
complex relationships within
the subsystem.

• We can be assured that the
subsystem will be misused,
leading to non-portable code

AIM

Card

SA/RT

Seat

Subsystem Design with Façade, Adapter,
Bridge
• The ideal structure of a subsystem consists of

• an interface object
• a set of application domain objects (entity objects) modeling

real entities or existing systems
• Some of the application domain objects are interfaces to

existing systems
• one or more control objects

34

j
• We can use design patterns to realize this subsystem

structure
• Realization of the Interface Object: Facade

• Provides the interface to the subsystem
• Interface to existing systems: Adapter or Bridge

• Provides the interface to existing system (legacy system)
• The existing system is not necessarily object-oriented!

Realizing an Opaque Architecture with a
Facade
• The subsystem decides

exactly how it is
accessed

• No need to worry about
misuse by callers

• If a façade is used the

VIP Subsystem

35

If a façade is used the
subsystem can be used
in an early integration
test

• We need to write only a
driver

AIM

Card

SA/RT

Seat

Vehicle Subsystem API

When should you use these Design Patterns?
• A façade should be offered by all subsystems in a

software system who a services
• The façade delegates requests to the appropriate components

within the subsystem. The façade usually does not have to be
changed, when the components are changed

• The adapter design pattern should be used to interface
to existing components

36

• Example: A smart card software system should use an adapter
for a smart card reader from a specific manufacturer

• The bridge design pattern should be used to interface
to a set of objects

• where the full set of objects is not completely known at
analysis or design time.

• when a subsystem or component must be replaced later after
the system has been deployed and client programs use it in
the field.

Page 10

Realizing an Opaque Architecture with a
Facade
• The subsystem decides

exactly how it is
accessed.

• No need to worry about
misuse by callers

• If a façade is used the

VIP Subsystem

37

If a façade is used the
subsystem can be used
in an early integration
test

• We need to write only a
driver

AIM

Card

SA/RT

Seat

Vehicle Subsystem API

Summary of Design Patterns Discussed So Far

• Composite Pattern:
• Models trees with dynamic width and dynamic depth

• Facade Pattern:
• Interface to a subsystem
• Distinguish between closed vs open architecture

Adapter Pattern:

38

• Adapter Pattern:
• Interface to reality

• Bridge Pattern:
• Interface to reality and prepare for future

Additional Design Heuristics

• Never use implementation inheritance, always use
interface inheritance

• A subclass should never hide operations
implemented in a superclass

• If you are tempted to use implementation
inheritance, use delegation instead

39

inheritance, use delegation instead

The Java‘s AWT library can be modeled with
the component pattern

Graphics

Component
*

getGraphics()

40

Button

TextField

Label

TextArea

Text
Component

Container

add(Component c)
paint(Graphics g)

getGraphics()

Page 11

Notation used in the Design Patterns Book

• Erich Gamma, Richard Helm, Ralph Johnson, John
Vlissides, Design Patterns: Elements of Reusable
Object-Oriented Software, Addison Wesley, 1995

• Based on OMT (a precursor to UML). Notational
differences between the OMT notation and UML:

• Attributes come after the Operations

41

p
• Associations are called acquaintances
• Multiplicities are shown as solid circles
• Dashed line: Instantiation Assocation (Class can instantiate

objects of associated class) (In UML it denotes a
dependency)

• UML Note is called Dogear box (connected by dashed line to
class operation): Pseudo-code implementation of operation.

Definitions

• Extensibility (Expandibility)
• A system is extensible, if new functional requirements can

easily be added to the existing system

• Customizability
• A system is customizable, if new nonfunctional requirements

can be addressed in the existing system

42

• Scalability
• A system is scalable, if existing components can easily be

multiplied in the system

• Reusability
• A system is reusable, if it can be used by another system

without requiring major changes in the existing system
model (design reuse) or code base (code reuse).

A Taxonomy of Design Patterns

43

√

√

√

√

The Proxy Pattern: 3 Types

• Caching of information (“Remote Proxy”)
• The Proxy object is a local representative for an object in a

different address space
• Good if information does not change too often

• Standin (“Virtual Proxy”)
• Object is too expensive to create or too expensive to

d l d

44

download.
• Good if the real object is not accessed too often

• Access control (“Protection Proxy”)
• The proxy object provides protection for the real object
• Good when different actors should have different access and

viewing rights for the same object
• Example: Grade information accessed by administrators,

teachers and students.

Page 12

√

45

Command Pattern: Motivation

• You want to build a user interface
• You want to provide menus
• You want to make the menus reusable across many

applications
• The applications only know what has to be done when a

command from the menu is selected

46

command from the menu is selected
• You don’t want to hardcode the menu commands for the

various applications

• Such a user interface can easily be implemented
with the Command Pattern.

Command pattern
Command

execute()

Receiver

action1()

Client

Invoker

ConcreteCommand1

execute()

«binds»

47

• Client (in this case a user interface builder) creates a ConcreteCommand and binds it to
an action operation in Receiver

• Client hands the ConcreteCommand over to the Invoker which stores it (for example in a
menu)

• The Invoker has the responsibility to execute or undo a command (based on a string
entered by the user)

action1()
action2()

()

ConcreteCommand2

execute()

«binds»

Comments to the Command Pattern

• The Command abstract class declares the interface
supported by all ConcreteCommands.

• The client is a class in a user interface builder or in a
class executing during startup of the application to
build the user interface.

• The client creates concreteCommands and binds
f

48

them to specific Receivers, this can be strings like
“commit”, “execute”, “undo”.

• So all user-visible commands are sub classes of the
Command abstract class.

• The invoker - the class in the application program
offering the menu of commands or buttons - invokes
theconcreteCommand based on the string entered
and the binding between action and
ConcreteCommand.

Page 13

Decouples boundary objects from control
objects
• The command pattern can be nicely used to

decouple boundary objects from control objects:
• Boundary objects such as menu items and buttons, send

messages to the command objects (I.e. the control objects)
• Only the command objects modify entity objects

• When the user interface is changed (for example, a

49

g (p ,
menu bar is replaced by a tool bar), only the
boundary objects are modified.

Command Pattern Applicability

• Parameterize clients with different requests
• Queue or log requests
• Support undoable operations

50

• Uses:
• Undo queues
• Database transaction buffering

Applying the Command Pattern to Command
Sets

Move

execute()

Match *

replay()
play()

51

GameBoard

«binds»
TicTacToeMove

execute()

ChessMove

execute()

Applying the Command design pattern to
Replay Matches in ARENA

replay()
play()

Move

execute()

Match *

nextMove()

ReplayedMatch

previousMove()

52

«binds»
TicTacToeMove

ChessMove

GameBoard

Page 14

Observer Pattern Motivation

• Problem:
• We have an object that changes its state quite often

• Example: A Portfolio of stocks
• We want to provide multiple views of the current state

of the portfolio
• Example:Histogram view, pie chart view, time line

i l

Portfolio

Stock
*

53

view, alarm

• Requirements:
• The system should maintain consistency across the

(redundant) views, whenever the state of the
observed object changes

• The system design should be highly extensible
• It should be possible to add new views without

having to recompile the observed object or the
existing views.

Observer Pattern: Decouples an Abstraction from its Views
Subject

subscribe(subscriber)
unsubscribe(subscriber)
notify()

update()

Observer
*observers

54

• The Subject (“Publisher”) represents the entity object
• Observers (“Subscribers”) attach to the Subject by calling subscribe()
• Each Observer has a different view of the state of the entity object

• The state is contained in the subclass ConcreteSubject
• The state can be obtained and set by subclasses of type ConcreteObserver.

ConcreteSubject

state

getState()
setState()

ConcreteObserver

observeState

update()

Observer Pattern
• Models a 1-to-many dependency between objects

• Connects the state of an observed object, the subject with
many observing objects, the observers

• Usage:
• Maintaining consistency across redundant states
• Optimizing a batch of changes to maintain consistency

Th i t f i t i i th i t

55

• Three variants for maintaining the consistency:
• Push Notification: Every time the state of the subject changes,

all the observers are notified of the change
• Push-Update Notification: The subject also sends the state

that has been changed to the observers
• Pull Notification: An observer inquires about the state the of

the subject

• Also called Publish and Subscribe.

Observer
update()

*Subject
subscribe()

unsubscribe()
notify()

Applying the Observer Pattern to maintain
Consistency across Views

56

InfoView
update()

getState()
setState()

File
-filename

ListView
update()

PowerpointView
update()

Page 15

Applying the Observer Design Pattern to
maintain Consistency across MatchViews

Observer

update()

observers

*1
Subject

subscribe(Subscriber)
unsubscribe(Subscriber)
notify()

57

GameBoard

state
getState()
playMove()

MatchView

gameBoard
update()

Push, Pull or Push-Update Notification?

Strategy Pattern

• Different algorithms exists for a specific task
• We can switch between the algorithms at run time

• Examples of tasks:
• Different collision strategies for objects in video games
• Parsing a set of tokens into an abstract syntax tree (Bottom up,

top down)

58

• Sorting a list of customers (Bubble sort, mergesort, quicksort)

• Different algorithms will be appropriate at different
times

• First build, testing the system, delivering the final product

• If we need a new algorithm, we can add it without
disturbing the application or the other algorithms.

Strategy Pattern

Context

ContextInterface()

Strategy
AlgorithmInterface

*

Policy

59

ConcreteStrategyC

AlgorithmInterface()

ConcreteStrategyB

AlgorithmInterface()

ConcreteStrategyA

AlgorithmInterface()

Policy decides which ConcreteStrategy is best in the current Context.

Using a Strategy Pattern to Decide between
Algorithms at Runtime

Database
* SortInterface

Policy
TimeIsImportant
SpaceIsImportant

Client

60

SelectSortAlgorithm()
Sort()

Sort()

BubbleSort

Sort()

QuickSort

Sort()

MergeSort

Sort()

Page 16

Supporting Multiple implementations of a
Network Interface

NetworkInterface

open()
close()
send()

i ()

NetworkConnection

send()
receive()
setNetworkInterface()

Application

LocationManager

Context =
{Mobile, Home, Office}

61

receive()setNetworkInterface()

Ethernet

open()
close()
send()
receive()

WaveLAN

open()
close()
send()
receive()

UMTS

open()
close()
send()
receive()

√

√

√

62

√

√

√

Template Method Motivation

• Several subclasses share the same algorithm but
differ on the specifics

• Common steps should not be duplicated in the
subclasses

• Examples:
• Executing a test suite of test cases

step1();
…

step2();

63

• Executing a test suite of test cases
• Opening, reading, writing documents of

different types

• Approach
• The common steps of the algorithm are factored out into an

abstract class
• Abstract methods are specified for each of these steps

• Subclasses provide different realizations for each of these
steps.

step2();
…

step3();

Template Method

AbstractClass

templateMethod()
step1()
step2()
step3() step1();

…
step2();

64

ConcreteClass

step1()
step2()
step3()

step2();
…

step3();

Page 17

Template Method Example: Test Cases

setUp();
try {

runTest();
} catch (Exception e){

recordFailure(e);
}

TestCase

run()
setUp()
runTest()
tearDown()

65

}
tearDown();

MyTestCase

setUp()
runTest()
tearDown()

Template Method Example:
Opening Documents

Application

openDocument()
canOpenFile(f:File)
createDocument(f:File):Doc
aboutToOpenDocument(d:Doc)

if (canOpenFile(f)) {
Doc d;
d = createDocument(f);
aboutToOpenDocument(d);
d.open();

66

MyApplication

canOpenFile(f: File)
createDocument(f:File):Doc
aboutToOpenDocument(d:Doc)

}

Template Method Pattern Applicability

• Template method pattern uses inheritance to vary
part of an algorithm

• Strategy pattern uses delegation to vary the entire
algorithm

• Template Method is used in frameworks
• The framework implements the invariants of the algorithm

67

• The framework implements the invariants of the algorithm
• The client customizations provide specialized steps for the

algorithm

• Principle: “Don’t call us, we’ll call you”.

√ √

68

Page 18

Abstract Factory Pattern Motivation

• Consider a user interface toolkit that supports
multiple looks and feel standards for different
operating systems:

• How can you write a single user interface and make it
portable across the different look and feel standards for
these window managers?

C id f ilit t t f

69

• Consider a facility management system for an
intelligent house that supports different control
systems:

• How can you write a single control system that is
independent from the manufacturer?

Abstract Factory

AbstractProductA

ProductA1 ProductA2

AbstractFactory

CreateProductA
CreateProductB

Client

ConcreteFactory1

70

Initiation Assocation:
Class ConcreteFactory2 initiates the

associated classes ProductB2 and ProductA2

AbstractProductB

ProductB1 ProductB2

CreateProductA
CreateProductB

ConcreteFactory1

CreateProductA
CreateProductB

ConcreteFactory2

Applicability for Abstract Factory Pattern

• Independence from Initialization or Representation
• Manufacturer Independence
• Constraints on related products
• Cope with upcoming change

71

Example: A Facility Management System for a House

IntelligentHouse HouseFactory

createBulb()
createBlind()

LuxmateFactoryEIBFactory

72

LightBulb

EIBBulb LuxmateBulb

Blind

EIBBlind LuxmateBlind

createBulb()
createBlind()

createBulb()
createBlind()

Page 19

Applying the Abstract Factory Pattern to
Games

Game

ChessTicTacToe

Tournament

createMatch()
createStatistics()

73

Match

TTTMatch ChessMatch

createMatch()
createStats()

Statistics

TTTStats ChessStats

createMatch()
createStats()

Builder Pattern Motivation

• The construction of a complex object is common
across several representations

• Example
• Converting a document to a number of different formats

• the steps for writing out a document are the same
• the specifics of each step depend on the format

74

p p p

• Approach
• The construction algorithm is specified by a single class (the

“director”)
• The abstract steps of the algorithm (one for each part) are

specified by an interface (the “builder”)
• Each representation provides a concrete implementation of the

interface (the “concrete builders”)

Builder Pattern

Construct()

Director

For all objects in Structure {
B ild B ildP t()

BuildPart()

Builder

75

Builder->BuildPart()
}

BuildPart()
GetResult()

ConcreteBuilderB Represen-
tation B

BuildPart()
GetResult()

ConcreteBuilderA

Represen-
tation A

Applicability of Builder Pattern

• The creation of a complex product must be
independent of the particular parts that make up the
product

• The creation process must allow different
representations for the object that is constructed.

76

Page 20

Example: Converting an RTF Document into
different representations

Parse()

RTFReader

while (t = GetNextToken()) {
switch t.Type {
CHAR: Builder >ConvertCharacter(t)

ConvertCharacter()
ConvertFontChange()
ConvertParagraph()

Builder

77

CHAR: Builder->ConvertCharacter(t)
FONT: Builder->ConvertFontChange(t)
PARA: Builder->ConvertParagraph(t) }

}

AsciiTextTeXText HTMLText

ConvertCharacter()
ConvertFontChange()
ConvertParagraph()

GetASCIIText()

AsciiConverter

ConvertCharacter()
ConvertFontChange()
ConvertParagraph()

GetTeXText()

TexConverter

ConvertCharacter()
ConvertFontChange()
ConvertParagraph()

GetHTMLText()

HTMLConverter

Comparison: Abstract Factory vs Builder

• Abstract Factory
• Focuses on product family
• Does not hide the creation process

• Builder
• The underlying product needs to be constructed as part of

the system, but the creation is very complex

78

t e syste , but t e c eat o s e y co p e
• The construction of the complex product changes from time

to time
• Hides the creation process from the user

• Abstract Factory and Builder work well together for a
family of multiple complex products

Clues in Nonfunctional Requirements for the
Use of Design Patterns
• Text: “manufacturer independent”,

“device independent”,
“must support a family of products”

=> Abstract Factory Pattern
• Text: “must interface with an existing object”

> Adapter Pattern

79

=> Adapter Pattern
• Text: “must interface to several systems, some

of them to be developed in the future”,
“ an early prototype must be demonstrated”

=>Bridge Pattern
• Text: “must interface to existing set of objects”

=> Façade Pattern

Clues in Nonfunctional Requirements for use of
Design Patterns (2)

• Text: “complex structure”,
“must have variable depth and width”

=> Composite Pattern
• Text: “must be location transparent”

=> Proxy Pattern

80

• Text: “must be extensible”,
“must be scalable”

=> Observer Pattern
• Text: “must provide a policy independent from

the mechanism”
=> Strategy Pattern

Page 21

Summary
• Composite, Adapter, Bridge, Façade, Proxy

(Structural Patterns)
• Focus: Composing objects to form larger structures

• Realize new functionality from old functionality,
• Provide flexibility and extensibility

• Command, Observer, Strategy, Template
(B h i l P tt)

81

(Behavioral Patterns)
• Focus: Algorithms and assignment of responsibilities to

objects
• Avoid tight coupling to a particular solution

• Abstract Factory, Builder (Creational Patterns)
• Focus: Creation of complex objects

• Hide how complex objects are created and put together

Conclusion

Design patterns
• provide solutions to common problems
• lead to extensible models and code
• can be used as is or as examples of interface inheritance

and delegation
• apply the same principles to structure and to behavior

82

• Design patterns solve a lot of your software
development problems

• Pattern-oriented development

