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Abstract-The basic thwrid of stability of mcchaniial and structural systems are described. The theory 
for discrete dynamical systems that has applications in control of systems is reviewed first. The variational 
stability criteria for nonlinear structural systems are then developed for both the conservative and 
nonconsmrative systems. For conservative systems, the existence of minimum potential energy is 
combined with the total Lagrangian formulation to construct the stability criterion. The Hamilton's 
principle and the concept of adjacent states of motion a n  adopted to investigate the criterion for 
nonconservative systems. To study computational aspects, two beam-column exampla arc present&. one 
with conservative force and the other with nonconxrvative force. 'lhe examples provide insights for 
numerical implementation of the criteria. 

Long after Euler's classic investigation of an axially 
compressed column in ,1744,' Poincark [I] presented 
fundamentals for a general theory of elastic stability. 
He showed that a loss of stability is normally associ- 

parameters. The analysis is suitable for those systems 
with multi-pattern loading. Thompson and Hunt [29] 
have published-a collection of all the papen presented 
at the International Union of Theoretical aad 
Applied Mechanics Symposium in 1982. Both the 
theoktical developments and experimental results are 

ated with either a limit point, which represents a local 
extremum on an initial path, or a bifurcation, which 
is the intersection of the initial equilibrium path with 
the branch path. Liapunov [2,3] also investigated 
the stability of motion of systems using first order 

summanzed. 
As for systems with nonconservative foras, 

Bolotin [32] gave fundamental approach to the deter- 
mination of the stability limit. Plaut [33,34] studied 
the itability limit of nonself-adjoint linear partial 

differential equations. His theories, especially the 
Liapunov direct method (or, so-called second 
method) have been widely used by several researchers 
[&lo]. In the .context of an elastic continuum, 
Bryan [I I] appears to be the first researcher who 
attempted to develop a general theory of stability. His 
analysis is based on the energy criterion as a postulate 
generalized directly from the well-known Lagrange 
theorem for discrete mechanical systems, and it 
is believed that this is the first adaptation of the 
extremum properties of the potential energy to con- 
tinuous systems. Later on, researchers such as South- 
we11 [12], Biezeno and Hencky [l3], Reissner [l4], 
Tmfftz [ I  5,161, Marguerre [I 1. Kappus [I 81 and 
Biot [19,20] limited their studies to determination of 
the stability limit rather than examining the behavior 
of the system on reaching and exceeding this 
limit. TreiTtz[l6] presented a variational principle 
that yielded the critical load. Folowing that, 
Koiter [21-27 gave a systematic nonlinear theory of 
stability in his classical thesis and his subsequent 
papers. His work has contributed signifiently to the 
understanding of nonlinear elastic stability. 

Thompson and Hunt [28,29] and Huseyin [30.31] 
give a complete summary of the theory of nonlinear 
elastic stability in their publications. Though, they 
only emphasize discrete systems, the theories can be 
extended to continua. Huseyin [30,31] also discusses 
the theory of nonlinear stability with multiple loading 

differential equations with time-varying coefficients. 
His model can be used to represent some linear 
continuous systems, i.e. elastic columns and plates, 
and cantilever beams subjected to random follower 
forces. His subsquent papers [35-31, however, con- 
centrated on the post-buckling behavior of disaetc 
systems. The imperfection-sensitivity was studied by 
the perturbation techniques. Leipholz (381 presented 
the application of energy methods to the stability of 
nonc&servative systems. Analyses for single- and 
multidegm-of-freedom systems were presented. 
Papastavridis (39-431 used the Hamilton principk to 
analyze the stability of motion of discrete systems 
using the concept of adjoint configuration. 

The stability investigation of conservative systems 
is well developed and documented. Systematic pro- 
cedures have been developed for both discrete and 
continuum systems. On the other hand, stability of 
nonconservative systems has been explored only rela- 
tively recently. Although, the fundamentals of invcs- 
tigating the critical point are well established, a 
unified criterion for a continuum is not yet available. 

Besides reviewing the classical theories for both 
discrete and continuous systems with conservative 
forces, this paper presents a variational form of the 
stability criterion for nonconservative systems. Geo- 
metric as well as material nonlinearities are included. 
In addition, a general condition is derived in the 
variational form that can distinguish between limit 



point and bifurcation point instability. Two numeri- 
cal examples are also solved which give valuable 
insights into the stability of nonwnservative systems. 
The motivation for the present review is to study 
stability criteria for nonlinear systems, so that wn-  
straints on the critical load can be included in the 
optimum design formulation. It has been shown 
previously (441 that such constraints must be included 
in the optimum design process for complex systems; 
otherwise the process fails and an optimum design of 
the system cannot be obtained. 

It is noted that the literature on applications of 
the stability theory to particular structural and mech- 
anical systems is quite extensive. That literature is not 
included in this review. Only the literature that 
contains fundamental concepts and basic theories of 
stability is cited. 

1- 
Also, let the perturbed motion be represented as 

2 SMILlTY OF DISCRETE DYNAMICAL SYSTEMS 

2.1. Definitions of stability 

Let the motion at time t of a point of the system 
in n dimensional space 'xi(t), i = 1 . . . n, continuously 
depend on certain parameters all j = 1 . . . m, which 
aIso include initial condition at ume to. The motion 
of the system can be written as functions of al as 
'xl(al). Let al be unperturbed parameters corrcspond- 
ing to unperturbed motion 'xi(al) and Jl be the 
perturbed parameters in the neighborhood of at 
corresponding to the perturbed motion '2,((T,), 
where the overbar indicates the perturbed state. The 
stability definition can be introduced according to 
Liapunov (21 as follows. 

Definition 1. The unperturbed motion 'x,(al) is 
stable with respect to parameters al if for each s > 0 
there is a 6 > 0 such that 

implies 

Definition 2. The unperturbed motion 'xi is called 
quasi-asymptotically stable if the condition 

lim {'.vi(al) - 'fi(Jl)} = 0 
I-a0 

holds for all perturbed values of 5, in the neighbor- 
hood of a,. 

Defnition 3. The unperturbed motion is called 
asymptotically stable if it is both stable and quasi- 
asymptotically stable. A motion which is stable but 
not asymptotically stable is called weakly stable. 

Let the motion of the system be described by a first 
order differential equation of the form 

where ti, is the offset motion from the unperturbed 
state. The perturbed motions must also satisfy q n  (4) 
provided the motion 'x, is replaced by 'f1. After 
substituting q n  (5) into eqn (4), the following 
quation is obtained: 

with the condition g,(O, I) = 0. muation (6) is called 
the differential quat ion of the perturbed motion with 
til = 0 as its trivial solution. If the functions gi are only 
implicitly dependent on time r ,  i.e. gi - g,(ti,), the 
system is called autonomous, otherwise it is called 
nonautonomous. If eqn (4) gives a constant solution 
'x, = c, for all t >, to, the system is said to be in a state 
of equilibrium, i.e. 'xi = 0. 

Definition 4. A function f (x, t )  is called decrescent, 
if it satisfies I f ( x ,  t)1 <$((XI) ,  where $(r) is con- 
tinuous real function in a close interval which 
vanishes at  r = 0, i.e. $(O) = 0, and increases strictly 
monotonically with r. 

2.2. Liapunov's direct (second) method 

Liapunou's stability theorem. The .solution of the 
differential eqn (4) is stable if there exists a positive 
definite (or negative definite) function A(& t)  such 
that its total time derivative A with i, given in eqn (6) 
is nonpositive (or, non-negative), i.e. 

In addition, if A(Ci, t )  is also a decrescent function, 
the solution is asymptotically stable [2.4.5]. 

Note that a summation on the range of the 
repeated index is implied in eqn (7). This convention 
is used throughout the paper. 

Llnpunov's instability theorem. The solution is 
unstable if there exists a positive definite decrescent 
(or negative definite decrescent) function A (4, I )  

whose total derivative with ii given in eqn (6) is 
positive (or negative) [2,4,5]. 

dA aA & dA dA A =- +,ui=-+-g,(ri,,r)>O (or <0).  
at au, at ail 

The functions A(ti,, t) that satisfy either of the 
foregoing theorem are called Liapunov functions. I r  
should be noted that, for each problem. the choice o i  
Liapunov function is not unique. 

2.3. Stability of autonomous systems 

For autonomous systems, the differential eqns (4) 

and (6) reduce to the form 
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In general. q n s  (9) and (10) are nonlinear. However, where 'His the total energy of the mechanical system 
if the unperturbed state is stable, the perturbed at time t, i.e. 'H = 'T + 'n, where 'T = 'T('kf) is the 
motion stays in a neighborhood of the unperturbed kinematic energy, ' x  = 'n('xf) is the potential energy, 
state. Thus, eqn (10) can be approximated using and 'p, is the momentum. Thus, the perturbed motion 
Taylor's expansion in the neighborhood of rS, = 0 as for this system can be written in a neighborhood of 

the unperturbed state as 

if = - '/dXk) C, + h.0.t. = af14. (1 1) 
x~ afR -- i arzl PI* (16) 

where a,, = df;('x,)/d 'xj. The matrix [afl] is not neces- 
sarily symmetric. With the assumption of stable where 
motion, there exists a function A(&) which satisfies 
the Liapunov stability theorem. Without loss of 
generality, let such a function be the positive definite 
quadratic form 

'Z1 = 'XI + Ii, 

Yl = ' P f  +PI 

where the matrix [bo] is symmetric' and positive Writing Taylor's expansion about G, = 0 for the left 
definite. The stability condition implies that total time hand side of eqn (16) and neglecting higher order 
derivatives of A along every trajectory of eqn (11) terns, the equation for the perturbed motion is 

.: must be negative, i.e. approximated as 

A =2buGlIf,=2bu~jk&ri,<0. (13) a 2 ( ' ~ )  A -- 
atx,atx, Iii 'PI. (17) 

That is, the matrix .[b,,alk] must be negative semi- 
definite or definite. Since the matrix [bU] is positive From Set. 2.3, the motion of system is stable if and 
definite, this condition can be satisfied if and only if if the matrix 
all the eigenvalues of the matrix [a,,] have a non- - ., - 
positive r&l part [5,45,46]. Let a,, i = 1 . . . n, be the 
eigenvalues of matrix [a,]. Then, one has 

as the stability condition. The system of eqn (9) 
becomes unstable when real part of one of the 
eigenvalues of [a,,l becomes ~ositive. Therefore, the 

(I4) has all eigenvalues with positive real parts. Since 

critical state; whi;fh is a tran$ion between stable and . is symmetric, all the eigenvalues are real. And since 
unstable states. is governed by 

Re@,) = 0; for any i, i = 1 . . . n. (IS) 

2.4. Stability of nonautonomous systems 

The stability investigation of nonautonomous sys- 
tems described by eqn (4) with equations of the 
perturbed motion in eqn (6), in general, requires a 
more profound approach. However, simple con- 
clusions can be drawn for some systems of equations 
using a method parallel to the one in the previous 
s t i o n .  If the matrix [all], which is now function of 
t, i.e. of, = a,,(t), is bounded and if the eigenvalues of 
[a,,] all have nonpositive real parts for every fixed 
1 2  to, sufficient stability can be obtained [SJ. 

2.5. Application of Liapunov's direct (second) method state. 

to conservative sjsierns 

one can conclude that the motion of a conseyative 
mechanical system is stable if and only if the potential 
energy has an isolated local minimum. Moreover, 
the motion ceases to be stable when the Hessian 
of potential energy becomes indefinite. Thus. the 
stability criterion for such systems is 

where t*  denotes time or load level for the critical 

The conservative system imples that 

a'H a 'H 
--='pf; - = I .  

d 'x, a 'P, Xi r 

3. STABILITY OF STRUCWRAL S Y W  

3.1. Stabiiity criterion for conservative systems 

It has been shown in Stc. 2.5 that the condition for 
stability of conservative systems is the existena of a 
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local minimum for the potential energy. In the van- Note that ,eIJ('u, a) are linear operators defined on 
ational form, this is equivalent to the field a. The second Piola-Kirchhoff stresses are 

related to Cauchy stresses as 
b2( 'n)  > 0. (19) 

The system becomes unstable whenever b2( 'n)  ceases OP 
:slJ = : ~ l # ' ~ ~ ~ ~ x ] . , ~  

to be positive definite. The stability limit, denoted P 

the state is then governed the whcrr :x,a is the invens of the defomtion gndient 
condition: tensor, (:xis) = (;xla)- ' .  and ' T , ~  are Cauchy stresses. 

b2("x) = 0. (20) Using eqn (22). the second variation of the total 
potential energy is given as 

Using the undeformed configuration for reference, 
the potential energy of structural systems can be 
expressed as { ~ ; S I ~ ~ ; L , J  + ~ S I J & ~ G , )  

where Uo(;c,,) denotes the internal energy per unit 
volume, called strain energy density, 'u, is the dis- 
placement field, if,, are the Cartesian components of 
the Green-Lagrange strain tensor at time t referred to 
the configuration at time zero, i and j have values 1, 
2 and 3, and the left superscript refers to the configur- 
ation in which the quantity occurs, and the left 
subscript refers to a reference configuration for the 
quantity [471. Later, the left superscript on some 
quantities will be omitted to indicate that they are 
only increments. Note that existence of a strain 
energy density function is assumed, so the formu- 
lation applies to linearly elastic, nonlinear elastic and 
hyperelastic materials. These are important materials 
in many practical applications. Note also that full 
kinematic nonlinearities are included in the formu- 
lation. The first variation of cqn (21) is given as 

where ;Sf, arc the Cartesian components of the 
second Piola-KirchhoK stress tensor corresponding 
to the configuration at time t but referred to the initial 
configuration. The Green-Lagrange strain tensor ;f, 
used with the second Piola-KirchhoK stress tensor a 
defined as: 

1 atu, atu, atuk atu, - I +-+-- 
2 dOxJ d0xi dOx, dOxJ 

and its arbitrary variation is given as 

To  account for nonlinear material behavior, the 
following rate or incremental form d the constitutive 
law is used: 

where 't$ilU is the tangent modulus tensor that may 
depend on total stress, total strain, and strain history. 
Also, from eqn (24), 6 ( 6 : ~ , ~ )  can be obtained as 

where dl,, (a,, b,) are the nonlinear operators defined 
on a, and b, as 

Substituting cqns (26) and (27) into q n  (25). b2( 'n)  
becomes 

Note that the terms in the last bracket in q n  (29) 
are similar to the quilibrium quation (6'71 = 0) if a 
special variation J2('u,) = 6'14, is selected. Thus, corn- 
bining q n s  (20) and (29). one obtains the stability 
criterion for conservative systems. which is known as 
the Euler method of investigation stability. as 

(24) where t represents the critical state. 
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It should be pointed out that the essential part of 
Euler's method is the existence of a potential function 
of the external forces. The method is applicable if the 
external forces have a potential and, in general, it is 
not if they do not. A discretized form of the method 
has been used along with the incremental formulation 
to determine the critical load [44] and in imposing the 
stability constraint on structural systems in their 
optimum design. 

3.2. Stability criterion for nonconservative systems 

Since nonconservative forces do not possess poten- 
tial functional, the principle of minimum potential 
energy fails to establish the point of transition from 
the stable to unstable state [32,39]. However, the 
concept of adjacent states is not bounded by these 
restrictions [39]. The guiding philosophy is to extend 
the familiar variational principle of dynamics, the 
Hamilton's principle, to the nearby perturbed state of 
motion. In this extension the results already known 
for the unperturbed state are used to drop some 
terms. Also, Taylor's expansion is used to refer all the 
quantities appearing in the adjacent state of motion 
to the corresponding known quantities at  the unper- 
turbed state. By investigating the subsequent motions 
of the adjacent state around the urrperturbed state a 
general criterion for stability is obtained. 

Sections 3.2.1 and 3.2.2 set up the equations of 
motion for the unperturbed state and adjacent states. 
In Sec. 3.2.3, the subsequent motions of the adjacent 
state are studied and the stability criterion is fonnu- 
lated. In Sec. 3.2.4, the analysis leading to the distinc- 
tion between the bifurcation point and limit point is 
presented. 

3.2.1. Equations of motion for the structural system. 
For any mechanical system in equilibrium or  motion, 

where Op is the mass density at the undeformed state. 
;1; and 'q, are components of the conservative and 
nonconservative body forces per unit mass at state t 
measured with respect to the undeformed configur- 
ation, and ;T, and ;Q, are the components of the 
conservative and nonconservative applied surface 
forces at state t measured with respect to the un- 
deformed configuration, respectively. Combining 
eqns (30) and (31) and integrating by parts, one 
obtains 

The above equation represents the equation of 
motion in Total Lagrangian formulation for any 
mechanical system. 

3.2.2. Equarion of motion for the aqacent state. 
Similar to the procedure described in Sec. 3.2.1, the 
adjacent state of motion at t must be governed by eqn 
(33) provided the perturbed quantities (denoted by an 
overbar) are used, i.e. 

Hamilton's principle states that for any kinematically 
admissible deviation from a fundamental state, one has Since the adjacent state is unknown, the following 

1 decompositions are needed: 

where to and I, are the initial and final times; and 
6'W. is the virtual work of nonconscrvative forces. 
Here 6A(t) is not the first variation of any action 
functional as in variational calculus; it is simply a 
collection of the first-order terms that result by 
applying the d'Alembert principle to the state t.  In the 
continuum form, 6'T, 6'n, and 6'W, are given 

where , Z,, = e,/ ( 'u, ii) + 4 ,) (zit. Ct ). The quan titics 
without left superscript t are increments from 
configuration at time t to the perturbed configuration 
without increase in the load intensity. ,el, ('a, ii) and 
f olrI (4, Ck) are the linear and geometrically non- 
linear strain increments with respect to the increment 
in the displacements. respectively. These operaton 
are defined in eqns (24) and (28). respectively. The 
variations of displacements and Green-Lagrange 
strain tensor in the adjacent state are given as . 
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. Sina  the'perturbed and unperturbed states are under because they are of higher order than other terms. 
the same loading intensity, and :TI are equal to &f; Therefore, q n  (38) reduces to 
and ;T,, respectively. However, the nonconservative 
forces at the two states are not the same because 
the loads are configuration dependent. Therefore. a ~ t )  = 1 I J - O P ~ ~ ~ G ,  - ( ~ ~ i ~ ~ ~ ( I i 4 ~  aIik) 
nonconscrvative forces are approximated by linear 
Taylor's expansion as + ~ S l / ~ ~ ~ ( ~ u ,  68) + O p  a -;-1i,6ri, '41 

d UJ 

a19i a1q1 . 
Iq, = lql + - Ii, + - atuj aili, "J 

Substituting q n s  (33437) into q n  (34) and 
noting that If;= 'xi + IT,, the following equation is 
obtained: 

which represents the equation of motion for the 
adjacent state. 

3.2.3. General criterion for structural stability. To 
establish the general nonlinear stability criterion, the 
subsequent motion of the adjacent state must be 
observed by introducing 

when zi, are amplitudes of 4. Also, from the general 
stress--strain constitutive law in eqn (26). the incre- 
mental form after linearization may be written as 

It is important to note that the incremental stress- 
strain law in eqn (26) can be used to represent 
phenomena like plasticity, creep, viscoelasticity, and 
viscoplasticity. These are classified as internally or 
materially nonconservative problems. 

Substituting q n s  (40) and (41) into eqn (39) 
and noting that e2" is arbitrary yields the stability 
criterion for the general structural system as 

d 'u, 

Note that ai, (and 64)  must satisfy the prescribed Equation (42) gives the load-frequency nonself- 
displactments, i.e. ti, (and 61i,) is a kinematically adjoint quadratic eigenvalue problem. Because of the 
admissible field. Thus. the first bracket in eqn (38) asymmetry, the o s  are. in general, complex, i.e. 
vanisha since it satisfies the Hamilton principle at the 
state r. Also. terms in the last bracket are neglected o - a + is, (43) 
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where a and p are real and imaginary parts of o. 
Thus, as time increases indefinitely, t?, reduce in 
magnitude and the adjacent state moves toward the 
state ~f motion at t, if and only if all the as  are 
negative. Moreover. if z is zero, the adjacent state 
keeps oscillating around the state at r. Therefore, the 
condition for stability of nonconsemative systems is 

a = Re(o) < 0 (44) 

for all o satisfying eqn (42). If any a is positive, we 
set from eqn (40) that IS, increases as time increases 
and the adjacent state moves away from the state at 
t. For this case, the system is in an unstable condition. 
The stable zone for o s  can be clearly shown in a 
complex plane as shown in Fig. 1. Furthermore, the 
transition between stable and unstable states is along 
the axis. Thus. at the critical point, the following 
condition must hold: 

However, condition (45) does not give the critical 
load. The critical load can be found by increasing 
load intensity in eqn (42) and monitoring the point 
where o ceases to satisfy the condition (44). If the 
critical configuration is denoted by t and the stab- 
ility criterion in eqn (42) becomes 

arq -  
+"L li)G,+Op- ri,bl?,o OdV a 'u, a''qi a 'u, 1 

For a problem without damping, the terms associ- 
, ated with the derivative with respect to velocity 

vanish. Therefore, the eigenvalue problem of eqn (46) 
gives values for 02, instead of o ,  which can be either 
real or complex. The conditions for 02 can be divided 
into three cases: complex number, positive real 
number. and negative real number. If one of the 0 %  
is a complex number. the structure is unstable. This 
is because the square root of complex numbers 
always yields two complex values, one of which has 
a positive real part. Secondly. if one of the 02s  is real 
and positive. then, the structure is again unstable. 
Only the situation where all 02s  are negative real 
numbers implies stability of the system. Hence the 
negative real value of o2 provides the necessary and 
sufficient condition for stability of undamped sys- 
tems. The critical point occurs when an 02 ceases to 

Stable Zone 0 Unstable Zone 

Fig. 1. Stable zone in complex plane for o. 

be a negative real number. Note that for nonconser- 
vative systems, the transition does not necessarily 
occur when 02 = 0, since 0 2 s  may become complex 
before any of them reach zero value. The stable zone 
in the 0 2 s  complex plane is shown in Fig. 2. - - 

It is important to note that the eigenva6e problem 
[eqn (4611 involves two parameters, o and the loads. 
Therefore, an iterative procedure must be used to 
determine the critical loads. The procedure would 
involve repeatedly changing the loads and solving the 
eigenvalue problem for o or a2, as the case may be, 
until a critical point condition, as discussed in the 
foregoing, is satisfied. This procedure will be demon- 
strated in a later paper using a numerical example. 

If the systems are internally nonconsemative only, 
i.e. there are no nonconservative external forces and 
if the material is isotropic, the eigenvalue problem 
(46) becomes symmetric. This is due to the fact that 
the material modulus is symmetric. Thus, the eigen- 
values of eqn (46) are all real and the one that satisfies 
eqn (45) must be zero (i.e. o2 = 0). Furthermore. 
since ri, and 6Gi vanish along the displacement pre- 
scribed boundary-namely they are kinematically 
admissible+ and 6E1 are interchangeable with Jru, 
(or 6u,). As a result, the stability criterion for systems 
with isotropic. nonconservative (or conservative) 
materials reduces to the criterion for conservative 

Stable Zone 0 Unstable Zone 

Fig. 2. Stable zone in complex plane for w2. 
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systems given in eqn (30). This explains that the Euler pattern. That is, there exists a load parameter, 'y, such 
stability criterion is applicable to internally non- that 
conservative systems with isotropic material. 

3.2.4. Limit point and bifurcation point analysis. A hA a hJX1y 1; h T1 = ;m1y)  
criterion to distinguish between the limit point and 
bifurcation point instability was presented for finite l q l = ' q l ( l ~ l ~ ' u k ~ l ~ ) ~  iQ,=bQi(lul,luk.'~). (48) 
dimensional conservative systems by Huseyin [30] 
and Riks 1481. The basic idea of an analysis to derive n e  load intensity depends on the load parameter in 
such a criterion is to determine whether or such a way that the load intensity is a monotonically 
another equilibrium stat? in a neighborhood of the inmasing function of ',,. A problem with unpropor- 
critical state is possible at a load slightly over tiond loads can be viewed as a problem with several 
the critical load. If such a state is possible, then the p,portional loads. 
critical load determined using the criterion in q n  (46) Consider the system at load level slightly higher 
corresponds to bifurcation point instability; other- than the load, denoted by +bt. ne 
wise, it corresponds to the limit point instability. TO motion ofthe system is govemd by eqn (331, with the 
use the foregoing procedure for a finite dimensional lefi supencript replaced by t~ + ~ t ,  i.e. 
quasi-static system, let and 'R be the internal 
and external forces at the critical point. Thus, 
"F - rR = 0. Now the load is given an increment AR 1: l v ( - O p f  +yUi6r+"'u1 - r + & ~ ~ 1 6 r  +%il 

and an equilibrium state at ''R + AR is desired. The 
new state will be in equilibrium if the virtual work +Opf +$frJr +&u1+ Opf +&q16' +&ul) OdVdt 
of all the forces in going through arbitrary, but 
kinematically admissible, virtual displacements is 
zero. In particular, we use the eigenvector represent- +I:' Iorr('+$T,6'+" UI 

ing the critical state as the virtual displacement v d o r  
in the virtual work principle. The internal for- in +' +&sklr +$Q,af d r T d t  = 0. (49) 
the virtual work equation are then approximated with 
mpcct to displacements using a linear Taylor's since 6 r + u U ,  is any lcincmatially dis- 
expansion about the critical state. This leads to the placrment field, it is replaced by the displacement 
equation: field u; for an adjoint structure that has the same 

boundary conditions as the original structure. The 

(Y TR) AY = 0, (47) strain field for the adjoint structure '*+%;, that is 
compatible with the adjoint displacement field, is 
defined using variation of the Green-Lagrange strain 

where y the eigenvector representing the critical tensor in qn (24) as [52,53]: 
state (obtained by solving the eigenvalue problem 
K,y = 0, where K, is the tangent stiffness matrix at P+AI  ,,€I, a = &,l('*+&u. ua). 
the critical point), R is the normalized external load 
vector and Ay is the increment in the load parameter. ~ h ,  eq,tion of motion for the adjoint structure will 
In q n  (47). if yTR = 0, then the critical point corrc- be defined later. n u s ,  eqn (49) can be written as: 
sponds to bifurcation instability, because Ay can be 
positive indicating that the load level can be in- 
creased. On the other hand, if yTR # 0, then Ay must {-opr+ucu. -'*+US r+br 4 

I I 0 1 1  O€II  

be zero to satisfy q n  (47). This will indicate limit 
point instability of the system. + O p r + $ j ; u ; + o p r + a r q l u ~ ) O d V  dt 

The foregoing procedure can be generalized to 
continua as well as nonconservative systems. This will 
give a variational form of the criterion to distinguish { f + ~ i u ; . . :  
between bifurcation and limit point instability. The 
derivation procedure for the criterion will introduce 
an adjoint structure or variable, that has been widely + r + A ~ ~ l ~ l ~ * * $ Q I ~ ; }  Odf rdt  0. (50) 

used in the structural design sensitivity analysis 
[49-531. The adjoint variables will replace the dis. Eq~af ion (50) can be further reduced 

placement variations around the critical state. Once the as 

the quation of motion has been expanded about the ' *& 
critical state. an adjoint quation will be identified, Ul = (*all + u1 

and criterion to distinguish between bifurcation and 
limit point instabilty will be obtained. l**$Sl, = cSll + oSll 

To simplify the problem, it is assumed that 
the forces acting on the strufture are in a certain r+bl # 

,€I] = 6.6; +ovI,(uk. 4 ) .  
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The applied load can also be decomposed in the 
neighborhood of critical point using Taylor's expan- 
sion for the load parameter, ' y ,  as 

I -+& a:A Oh=;A+-AY a 'Y 

a: T, " ' ~ , ~ : T , + -  Ay 
sty. 

r +dr , ,qi4,x ' .qI+~uj+7ti ,+- arqi 81-91 Ay 
. au,  au ,  a l y  

r + &  dZa XQi ,, : X Q  Ay, (52) 
O Q ~ ~ ; Q ~ + ~ U ~ + ~  a U ,  au ,  a 7  

where 

Thus, eqn (50) b m e s  

r f r ~  f 

therefore, vanishes. The third bracket will be. 
neglected because of its higher order. The second 
bracket is used to set up the adjoint equation from 
which the adjoint displacement u; will be compound, 
1.e. 

ap9i 
+Op - u,u; + 0 p  9 uju: a 'u, '3 

Thus, eqn (53) reduces to 

Next, a procedure similar to that in Sec. 3.2.3 
is used, i.e. u, = ti,&". where ri, are amplitudes of ui. 
u,, 4, and u; are all kinematically admissible because 
they vanish along displacement prescribed boun- 
daries. Since limits for the time integral are arbitrary 
and the time exponential is not zero, the following 

arq; 
condition is obtained from eqns (54)-and (55): 

- 

aui ,. + O p T l i j u ~ O d ~  dr + / ' ' I  Q,u: 
a uj @ orr a x Lv { - O ~ ~ ~ U ; ~ Z  - {:sil d i j ( f i k *  u:) 

+'*4,u&kI('u. PI:€; 1 

4 a: Ql, ,'a od,r,t 
aox, atli, +-- I I 

+ [ I ~ A y { ~ v ( . p ~ u ~ + O p ~ u :  '3 Y and 

+ f  Orr ( ~ u ; + ~ ~ , , ~ ~ ;  a Y ) OdT, } d t ]  = 0. 
A y { l v t p  gu: + ~ p  9 a Y U ; ) O ~ V  

&cause of the compatibility between (u;,  : c t )  and .. . ' .. G . 

, (6"ui, 6:~,,), the first bracket is equivalent to the Equation (56) yields a quadratic eigenvalue prob- - - ..,. -,,; 
equation of motion for the critical state r e  a n d ,  lem with the same characteristic 

. . .  
. . 
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slender beam are used here. Therefore the deformed 
coordinates and the displacements are 

I' I' 
Ox2 + 'u2 

- 
'22 where 'u,, is the displacement due to the axial load. 

~ i rn i l a r l~ i  one obtains 
Equllibrtum State Adjaomt State 

Fig. 3. Beam-column under tip force. 

stability criterion (46). With the value of w at the 
\ J 

critical point, u: can be recognized as the left eigen- aati, 
function of the stability criterion and ci, the right {2}=pla- eigenfunction. Furthermore, 6, and li, are, in fact, 
identical. 

61% 

The study of (57) leads to the distinction between 
the limit point and the bifurcation point instability oecl('u9 &,('u, 8 i )  and di l (k ,  8 4 )  can be ex- 

pressed as . - which can be summarized as follows: 

1. If the terms in the brackets of eqn (57) vanish, by 
does not have to be zero. This indicates that, at 
the critical point, the load increment exists for a 
perfect structure and the system moves in the 
direction of unstable branch of motion. The point 
satisfying this behavior is called the bifurcation 
point. 

2. If the summation of the terms in the brackets of 
eqn (57) does not vanish, Ay must be zero. This 
means that the load cannot be inceased in the 
neighborhood of the critical point. Therefore, the 
point encountered here is the limit point. 

Note that the criterion in eqn (57) can be used only 
after the critical state and the corresponding load 
have been determined. 

4 COMPU7ATIONAL PROCEDURE 

In this section, the general stability criterion in 
eqn (45) is used to set up the characteristic equation 
for both conservative and nonconservative problems. 
Though the examples are fairly simple. they give 
valuable insight into the properties of w, and compu- 
tational procedures for more complex problems. 

4.1. Beam-column un&r rip force 

The column under the conservative tip fonx is 
investigated. The equilibrium state and the adjacent 
equilibrium state together with the reference co- 
ordinates are shown in Fig. 3. The assumptions of a 

d6CIa , d261i, 

g,, ('u, 6 4) = a0x1 X' dOx: [- -0 

where 

Also. the state of stress in the equilibrium state r 
with linear elastic material is 
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Substituting eqns (60) and (61) into eqn (46). one effects may be neglected. Therefore, the following 
obtains the equation for the stability criterion as terms vanish: 

Finally, the stability condition in eqn (63) becomes 

Equation (66) can be discretized by any standard 
finite element method and yields the frequency eigen- 
value problem of the following form. 

- Using integration by parts, eqn (62) yields two un- 
couple differential equations with separate boundary 
conditions on variables ii,, and II,. Those differential 

- ' equations and their associated boundary conditions 
:. can be combined to obtain two conditions at the 

critical point as where M, K, and K, are mass, linear stiffness and 
geometric stiffness matrices, respectively, and 0 is 
mode shape of the buckled state corresponding to the 
eigenvalue 02. 

Using a two-element model as shown in Fig. 4 and 
standard beam finite elements, the matrices M, K. and 
KG are calculated as 

and 

To be consistent with the equilibrium equation the 
, ' last term in eqn (63) is neglected. As a result q n  (63) 
I yields the solution of tit = 0 for any value of load 

parameter with elastic material model. Therefore, 
, . only eqn (63) becomes the stability criterion for this 

problem. If the span-depth ratio of the beam is 
. , relatively largonamely the deformation due to 

shear and initial resistance to rotational acceleration 
of the beam cross section are small, the rotational 

where I = L/2.  Note that KG explicitly depends on the 
magnitude of the load, P. Thus. the eigenvalue 
problem (67) can be solved for 0' at  a given value of 
P. As P is increased incrementally, the associated 
eigenvalue oz is computed and monitored. The 
numerical solution of the eigenvalue problem is per- 
formed by the subroutine GVCCG in the IMSL 
subroutine library. The largest eigenvalue o' changes 
sign from negative to positive when P is ,approxi- 
mately n2/4 EI/L2. The load+igenvalue relation is 
shown in Fig. 5. 

It is important to note that since the problem is 
conservati;e, the load-frequency cigenvalue problem :. . , 

Fig. 4. Discretization of bcam-colurnn. (67) can be solved directly for the critical load b9'. . :;a& 
, I .  , . '1 
. 41 I .t-;-, &# 
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Equlllbrium Strtc Adjracnt State 

Fig. 6. Beam-column under follower force. 
Fig. 5. Load vs largest cigenvaluc variation for 

beam-column under tip force. 

setting 02= 0 (refer to Sec. 3.2.3). The result is a nonconservative force. The tip force remains 
tangential to the column's tip at all times. The 
problem reference axis is given in Fig. 6. 

Similar to the previous example, eqns (58x61) 
hold. However, in addition to the terms in eqn (61), 
there is a non-zero boundary integral term coming 
from the effect of the nonconservative force 

identical to that obtained using the stability criterion 
for conservative systems given in eqn (30). In this 
case, the eigenvalue problem will be only in terms of 
the critical load parameter that needs to be solved 
one.  This is the usual procedure for computing the 
critical load for conservative systems. The procedure 
in the foregoing paragraph is used merely to demon- 
strate the use of general stability criterion given in 
eqn (445). 

To demonstrate that the current problem is that of 
bifurcation instability rather than limit point instabil- 
ity the criterion given in eqn (57) is used. For the 
problem, the magnitude of the applied load at 
the column tip is selected as the load parameter. 
Therefore, 

Thus, the stability criterion of eqn (46), after ignoring 
the rotational terms, gives two necessary conditions 
at the critical point 

while other terms are zero in eqn (57). Also. because 
of problem symmetry, the adjoint displacements u; 
are identical to ti,. Thus, eqn (57) becomes 

As in the previous example, the last terms in eqn (72) 
(70) are neglected. Thus. only eqn (73) governs the critical 

state. Equation (70) can be discretized to yield the 
Sinu rib has been determined to be zero with the load-frequency eigenvalue problem as 
elastic material model. AT need not be zero in the 
above equation. As a result, it is a bifurcation point 
inslability problem. 

4.2. Beam-column lvirh follow rip force 
b ~,*d.  7 , hL 

where M. K, and KG, using the two-beam-element 

d w m q  I ~ G J . . .  .r 
The problem of the previous subsection is now model. are identical to the previous problem as given , , , 

reconsidered under the follower tip force. which is in eqn (68). The term RG is the additional geomeme 
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(2 19.77 EI/L3.  The characteristic of all four o2 are 
shown in Figs 7 and 8. 

Compared to the previous problem, one sees that 
the nature of the problem is changed when the load 
becomes nonconsemative. The frequency, instead of 
moving from a stable to an unstable region through 
the origin, now moves out of the stable region at 
other points along the B axis. Also, the largest 
eigenvalue is not necessarily the one to dominate the 
problem characteristic. 

To show that this is also a problem of bifurcation 
instability only the axial component of the left eigen- 
function of the stability criterion is required. The 
coefficient of Ay in eqn (57) is given as 

I 
Fig. 7. Variation of  two largest eigmvalui  vs load P for 

bam-column under follower force. 

stiffness due to the nonconservative force, and for the 
-'. two-beamelement model, it is given as 
4 

yo 0 0 0 1  

(75) where u t  is the axial adjoint displacement. Since 
eqn (72) is symmetric after neglecting the last 

0 0 0  0 two terms, u;, is identical to GI, and is zero. Also, 
since the transverse displacement tq does not occur, me presence the RG Illakes the eigen~rOblem a f ' u , / d O x ,  = 0. Thus, eqn (76) vanishes, and it is again 

unsyrnmetric and, therefore. o2 may not be zero at  a bifurcation instability problem. 
the critical state. Since Kc also dewnds on the load - 
parameter P explicitly as in. KG, a numerical pro- 
cedure similar to that used in previous example is 
repeated. As the load P is increased, however, two of 
the eigenvalues o' become complex before a positive 
value of o2 is encountered. The transition occurs 
when the load is about 20.19 EI/L2,  which yields the 
buckling load for the column. Bolotin's analysis (321 
also gave the buckling load of 20.19 EI/L2 for 
this problem while Beck [54] gave the critical load 
as 20.05 EIIL? Deineko and Leonov[SS] found 
the buckling load to be around 2 z 2 E I / L 2  

5. DlSCUSSION AND CONCLUSIONS 

In this paper, theories for the stability of mech- 
anical and structural systems are presented. The 
Liapunov second method for the study of the stability 
of dynamical systems is described, and an extension 
of the method to conservative systems is provided. 
The stability criteria for both the conservative and 
nonconservative structural systems are then devel- 
oped using continuum formulations and the Total 
Lagrangian concept. The criteria can be applied to 
such practical structural systems as trusses, beams, 
frames, plates, and shells. The continuum expressions 
can be discretized using isoparametric finite element 
procedures, so that the theory can be applied 
to complex structures. Additional work is usually 
required before the final computer implementable 
equations are obtained. Furthermore, since the geo- 
metric and material nonlinearities (with the incremen- 
tal constitutive material law) are included in the 
formulations, the criteria can be applied to highly 
nonlinear structural problems. Even though the cri- 
teria are formulated based on the Total Lagrangian 
formulations, they can be extended for the Updated 
Lagrangian formulation. 

-60000 Though, only the linear material mode1 is used in 
both examples, the stability criteria are applicable to 

Fig. 8. Variation of  two smallest eigenvalua vs load P for Systems with nonlinear material behavior. However, 
beam-column under follower force. appropriate material constitutive models need to be 
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used. For plasticity problems, the loading or unload- 9. A. S. Andre~ev, On the asymptotic stability and 

ing material modulus tensor needs to be used depend- instability of the zeroth solution of a non-autonomous 
system. J. appl. Math. Mech. 48, 154-1 59 (1984). 

ing on whether the stnss is increasing or decreasing 10. A. S. Andreyev, On the asymptotic stability and 
at a mint of the continuum. instability of the zero solution of a non-autonomous 

In-addition to the stability criteria, a variational 
expression is developed to distinguish betwan the 
limit point and bifurcation point instability. It is 
important to identify the type of instability when 
analysis beyond the critical point or design sensitivity 

- , analysis of the critical load is needed. 
, From the study, the following conclusions arc 
,, drawn. 

(1) Characteristics of the Liapunov functions deter- 
mine the stability of the dynamical systems. ' (2) Liapunov's direct method leads to the criterion of 

' 

the existence of a minimum for the total potential 
3, ' energy for conservative systems in motion. This 

is called Euler's method. The method is extended 
to nonlinear problems. 

(3) The stability criterion for conservative systems is 
simply a special case of the criterion for non- 
conservative systems. 

(4) In the stability investigation of systems with 
nonconservative applied forces, whether in static 
equilibrium or in motion, the dynamic method 
must be employed. 

(5) The general stability investigation is equivalent 
to the study of the natural frequencies of the ' systems in the deformed state. 

I I 
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