2-1 STRAIN ENERGY OF BEAMS, COLUMNS AND SHAFTS

STRAIN ENERGY DUE TO BENDING

➢ Elastic material: internal forces are conservative in the kinetic sense.

➢ Straight beam subjected to bending about two axes and load along its axis; consider principal axes of inertia.

\[\int \xi dA = 0, \quad \int \eta dA = 0, \quad \int \eta \xi dA = 0 \]

➢ Assumptions: plane sections remain plane and normal to the centroidal axis.

➢ Derive expressions for moments along two axes using vector product.

\[s = a? + b? + c \]

\[M = r \times F, \quad r = \xi e_1 + \eta e_2, \quad F = \int \sigma dA, \quad \sigma = \sigma e_3 \]

\[M_? = \int s? dA; \quad M_? = -\int s? dA; \quad N = \int s dA \]

➢ \[s = -\frac{M_?}{I_?} + \frac{M_?}{I_?} + \frac{N}{A} \]
Derive strain energy density expression: virtual work of the internal force on a small differential element dsdA is given as

\[w_i' = \int (\sigma dA) d\varepsilon = -1/2 E \varepsilon^2 dA \]

Strain energy of small element, dU = 1/2 \(\sigma \varepsilon \) dA

Strain energy density, \(U_0 = 1/2 \sigma \varepsilon \)

Strain energy expression for the beam: \(\frac{1}{2} \int U_0 dV = \frac{1}{2} \int \sigma \varepsilon dV \)

Strain energy is sum of three strain energies

\[U = \frac{1}{2E_0} \int \left(\frac{M_x^2}{I_x} + \frac{M_y^2}{I_y} + \frac{N^2}{A} \right) ds \]

Moment curvature relationship: \(M = EI/R \)

Strain energy for bending in one plane

\[U = \int_0^L \frac{EI ds}{2R^2} = \frac{1}{2} \int_0^L EI [x''^2 + (y'')^2] ds = \frac{1}{2} \int_0^L EI(y'')^2 dx \]

STRAIN ENERGY DUE TO SHEAR

Shear stress is approximated by the elementary formula

\[t = SQ/Ib \]

Strain energy density due to shear deformation: \(t^2/2G \)
Strain energy due to shear deformation: \[U_s = \int_0^L \frac{?S^2}{2GA} \, dx; \]

\[? = \frac{A}{I^2} \int \frac{Q^2}{b} \, d? \]

\[U_s = \frac{1}{2} \int_0^L \beta S \, dx; \quad \beta = \text{slope due to shear deformation}, \quad \beta = \frac{?S}{GA} \]

\[y \text{ includes deflection due to shear; } y' \text{ is the total slope} \]

Slope due to bending only = \(y' - \text{slope due to shear} \); similarly curvature

\[U_b = \int_0^L EI[y'' - \beta']^2 \, dx \]

The problem is to determine \(y \) and \(\beta \) to minimize the total potential energy among the functions that satisfy the end conditions and continuity requirements.

For clamped end: \(y = 0, y' = \beta, M = EI(y'' - \beta') \)

For pinned end: \(y = 0, M = 0 \) gives \(y'' = \beta' \)

For free end: \(M = 0 \) gives \(y'' = \beta' \)

\[S = 0 \text{ (} \frac{dM}{dx} = 0 \text{) gives } y''' = \beta'' \]

At the point where a point load is applied, \(y' \) and \(\beta \) are generally discontinuous, but \((y' - \beta) \) and \((y'' - \beta') \) are
continuous, since the bending moment is continuous. \((y''') -
\beta''\) being proportional to shear is discontinuous.

STRAIN ENERGY DUE TO TORSION

- Derive an expression for strain energy due to torsion
- Expression for torque: \(T = GJ\theta/L\)
- Strain energy due to torsional deformation: \(U_T = \frac{GJ\theta^2}{2L}\)
- Total strain energy = sum of all strain energies