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Abstract

This paper introduces a point-cloud method for the stress analysis in biological

systems. The method takes a point cloud as the geometric input. Each point represents

a small material volume which is assumed to undergo a uniform deformation during

motion. The strain at each point is computed from the relative displacements of a

set of neighboring points. Delaunay tessellation is utilized to provide the neighboring

relation and the point volume. An efficient method is developed to extract point-cloud

model from medical images. An aorta inflation problem and a skull impact problem

are presented to demonstrate the utility of the method.
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1 Introduction

Medical images provide a pixel-resolution point-cloud depiction of the anatomy of biological

organs. In the traditional finite element analysis, a point cloud needs to be first converted

into a CAD (Computer Aided Design) solid and then meshed into a finite element model.

The conversion from is by no means a trivial task. Biological organs often contain intri-

cate geometry features that are difficult to describe in CAD geometry. Even if a CAD

model is derived, meshing the solid body may still present a significant challenge. With

the advance of mesh generators, it is now possible to generate kinematically admissible

tetrahedron meshes for an arbitrary 3D geometry. But it is yet impossible to automati-

cally generate analysis-quality mesh for complicate geometries. Presently mesh generation

is semi-automatic at the best, and often user’s interference is needed. For biomedical sys-

tems, mesh generation remains the most tedious and time-consuming step in the procedure

of analysis.

Recently, the present authors developed a family of discrete gradient methods (DGM)

[1, 2] for stress analysis. The method is motivated by imaged-based applications; an

underlying goal is to perform stress analysis directly on point clouds without converting

them into a finite element model. The discrete gradient method computes the strain at

a point from the relative displacements in a set of neighboring points. This pointwise

gradient is utilized to establish the governing equation from a discrete weak form. The

method consists of two essential ingredients, one is the identification of the neighboring

set, and the other is the computation of discrete gradient. In [1, 2], we described two

approaches of defining neighbors and derived the respective discrete gradient formula.

These two formulations pass the constant strain patch test by construction. It has been

demonstrated that DGM retains the accuracy and convergence rate of bilinear quadrilateral

elements, exhibits a locking-free behavior, and is more tolerant to mesh distortion. The

method is easy to implement since it does not construct the continuum assumed solutions

and thus bypasses the computation of basis functions, either element-based or meshfree.
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More importantly, the method has the potential of lending itself to a fully automated

procedure for image-based analysis.

The objective of this paper is to describe such a procedure. The proposed paradigm

is markedly different from the voxel finite element method (VFEM) whereby voxels are

directly converted into eight-node hexahedral elements [3, 4, 5, 6, 7, 8]. A limitation of

the voxel method, as pointed put by [9], lies in the jagged stair-step surfaces. The non-

smooth surface can cause numerical problems and sacrifices the algorithmic robustness.

To overcome this shortcoming, smoothing techniques were adapted [10, 11]. Algorithms

were developed to modify the hexahedrons near the surface while keeping the interior mesh

intact [12, 13, 14]. These strategies amend the hexahedron mesh with layers of tetrahedron

elements near the boundary. In contrast, the current method is not element-based; the

continuum assumed solution is never constructed.

The paper starts with a review of the discrete gradient method. An efficient method

for segmenting point clouds from medical images is introduced in Section 3, where the

entire procedure pipelining from point-cloud registration to stress analysis is also described.

Numerical examples are presented in Section 4 to demonstrate the method.

2 Discrete gradient method

2.1 Gradient interpolation vectors

The starting point of DGM is the approximation of the pointwise gradient of a function

using a generalized finite difference. Assuming we can associate each point with a set

of neighbors and denoting by NI the local point set that comprises of the point I and

its neighbors, we seek to construct gradient interpolation vectors R∗

IJ
to approximate the

gradient of the function u at the node I by

(∇hu)I =
∑

J∈NI

R∗

IJuJ . (1)
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For second order problems a linear consistency condition is imposed such that the operator

(1) can exactly recover the gradient of any linear function. This condition is satisfied if

and only if
∑

J∈NI

R∗

IJ = 0,
∑

J∈NI

R∗

IJ ⊗ xJ = I , (2)

where xJ is the coordinate the node J .

In the discrete setting, the domain is initially defined by a set of points. Each point

represents a small volume (or area in 2D) around it. In the sequel, we use the term volume

to mean the Lebesgue measure in the respective dimensions. It is required that

∑
I

VI = V , (3)

where V is the total volume of the domain and VI is the point volume. In [1, 2], we

utilized a geometric construction whereby the domain is partitioned into non-overlapping

and domain-filling cells, each containing a point. The volume VI is taken to be the cell

volume and hence the condition (3) is satisfied by construction.

In [2], we described a discrete gradient operator over an arbitrary polygon mesh. First,

the domain is partitioned into subdivision cells using a generalized subdivision process

which for a triangular mesh reduces to the standard barycentric subdivision [15]. The nodal

cell consists of the union of the subdivision quadrilaterals. Consequently, the neighbors of

a point comprise of the vertices of all polygons sharing that point. An example is shown in

Figure 1. The point volume VI is the sum of the subdivision cells containing the point I.

The volume depends smoothly on the nodal coordinates of the neighboring set. It turns out

that the vectors R∗

IJ
= 1

VI

∂VI

∂XJ
satisfy the linear consistency condition (2) and hence they

furnish a set of interpolant vectors for the discrete gradient operator defined in equation

(1).

The method can be readily extended to tetrahedral or hexahedral meshes. In this case,

a tetrahedral element is divided into to four polyhedrons of equal volume, as shown in

Figure 2. A hexahedral element is divided into to eight hexahedrons by connecting the

barycenters of the element, the centers of the facets and the middle points of the element
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Figure 1: Barycentric subdivision and nodal cell: (a) Triangle subdivision; (b) Nodal cell

in a triangle mesh and the nodal set NI consisting point I and points J1 through J5; (c)

Illustration of a nodal cell in polygon mesh and the nodal set NI consisting point I and

points J1 through J7.

edges. The volume of each subdivision hexahedron can be expressed as a function of the

vertices with the aid of finite element isoparametric mapping.

The cell ΩI is the union of subdivision polyhedrons containing the point I. The cell

volume is

VI =
∑

e

VeI , (4)

where VeI is the volume of the subdivision polyhedrons from element elements e, and the

sum runs through the elements connecting to the node I. As in the 2D case, the gradient

interpolants are defined by

R∗

IJ =
1

VI

∂VI

∂XJ

, (5)

A key property of this construction is that the point volume VI is translation-invariant

under any rigid body motion, and affine-invariant under any uniform stretching or shearing

applied to the points. That is

VI(xI + a,xJ1
+ a, · · · ,xJn

+ a) = VI(xI ,xJ1
, · · · ,xJn

) ∀ vector a ∈ R
3,

VI(FxI ,FxJ1
, · · · ,FxJn

) = det(F)VI(xI ,xJ1
, · · · ,xJn

) ∀ linear map F : R
3 7→ R

3, detF 6= 0.

(6)

It has been proved in [2, Section 2] that the invariance condition (6) implies (2), which in

turn guarantees the linear consistency of the gradient operator defined by (1).
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Figure 2: Barycentric subdivision of a tetrahedron

Remarks

1. In a tetrahedron mesh, the gradient defined here is identical to the nodal average

gradient [16, 17, 18, 19]. Nevertheless, the current construction is more flexible in

the sense that the subdivision does not have to be barycentric. In other words,

the volumes of the subdivision polyhedrons do not have to be equal. The formula

(5) applies to arbitrary subdivision as long as the point volume VI obeys the affine

invariance condition (6).

2. The derivation of R∗

IJ
for a tetrahedral mesh proceeds directly and the details are

omitted here. For a hexahedron, the volume of each subdivision element and its

derivatives to vertex coordinates can be derived symbolically with the aid of finite

element isoparametric mapping. The expressions are lengthy and thus not recorded.

For a cubic element, the expression simplifies significantly.

3. The current method bears similarities with the smoothed strain FEM (SFEM) [20,

21, 22], but the computational structure differs substantially. The calculation of

nodal gradient in DGM relies on the differentiation of area or volume of a nodal cell,

instead of smoothing an underlying continuum strain over the subcells. Remarkably,

the strain computation in DGM is purely discrete. By comparing the results shown

in [2, 23] and [22], it can been seen that the DGM has the same level of accuracy and
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convergence rate as SFEM.

2.2 Discrete gradient method for finite strain elasticity

Let x represent the position of a material point in the current configuration and let X

be the position of the same material point in the reference configuration. In the discrete

setting, the deformation Φ : x = Φ(X) is defined point-wisely by displacement values at

nodes. The discrete deformation gradient at the node I can be given by

Fh
I := (∇hΦ)I =

∑
J∈nodes(ΩI)

xJ ⊗ R∗

IJ , (7)

where the interpolant R∗

IJ
is defined relative to the reference geometry. A variation of the

nodal positions induces a corresponding variation of the deformation gradient

δFh
I := (∇hδΦ)I =

∑
J∈NI

δΦJ ⊗ R∗

IJ . (8)

The discrete spatial gradient of the displacement variation is introduced as

(∇hδΦ)I = (δFh
I )(Fh

I )−1. (9)

In the Lagrangian setting, the equilibrium is governed by the boundary value problem

Div P + ρ0b = ρ0ü, PF = FTPT in Ω0,

PN = p̄ on ∂Ω0t,

Φ = Φ̄ on ∂Ω0u,

(10)

where P is the first Piola-Kirchhoff stress, b is the body force per unit mass, where u is

the displacement vector, N refers to the unit outwards normal vector on the boundary, p̄ is

the applied boundary traction, ∂Ω0, and the subscript 0 denotes quantities in the reference

configuration. The continuum weak form of the boundary value problem is

∫
Ω0

∇δΦ : P(F)dA +

∫
Ω0

δΦ · ρ0üdA −

∫
Ω0

δΦ · ρ0bdA −

∫
∂Ω0t

δΦ · p̄dS = 0 , (11)

where δΦI is any kinematically admissible virtual displacement.
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Having the point-wise discrete gradient, the weak form can be approximated as

∑
I

V0I(∇
hδΦ)I : P(Fh

I ) +
∑

I

V0IδΦI · ρüI =
∑

I

V0IδΦI · ρbI +
∑

I

AtIδΦI · p̄I , (12)

where AtI stands for the area of the cell surface over which external surface traction is

applied. The domain boundary is naturally defined as the union of the exterior boundary

of the cells. For a hyperelastic material, the first Piola-Kirchhoff stress is derived from the

material strain energy function W via P(FI) = ∂W

∂FI
. The right-hand side of equation (12)

can be collectively written as
∑

I

f ext
I · δΦI ,

and hence f ext
I

= V0IρbI + AtI p̄I . The force f ext
I

corresponds to the resultant external

force on the cell I. The stress divergence term gives rise to the nodal residual vector f int
I

such that
∑

I

δΦI · f
int
I =

∑
I

V0I(∇
hδΦ)I : P(Fh

I ) .

Putting them together, the discrete weak form yields the following set of nonlinear differ-

ential equations in time:

f int
I + mI üI − f ext

I = 0 ∀I, (13)

where the pointwise mass mI = ρV0I . The system is solved numerically using a Newmark

method in time domain. At each time step, a Newton method is employed to solve the

nonlinear algebraic equations. The tangent stiffness matrix is computed in exactly the

same manner as the finite element method. Interested readers are referred to [1] for the

expressions of the matrices.

2.3 Stability of discrete gradient method

Similar to the nodal strain or the nodal integration methods [16, 17, 24, 25, 26, 27], the

discrete gradient method is prone to having spurious singularity or low energy modes arising

from stain cancellation in the averaging process. The nature of this kind of instability has

been clearly delineated in [28, 23]. Following [28], we adopted a stabilization scheme for
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small strain elasticity [23]. The method penalizes the difference between the nodal average

strain and the subcell strains by augmenting the strain energy with a penalty term:

∫
Ω

ε : Dεda →

N∑
I

VIεI : DεI +
N∑
I

∑
e∈elem(ΩI)

αVeI(εI − εeI) : D̃(εI − εeI). (14)

Here, ε is the strain tensor, D is the fourth-order elasticity tensor, VeI is the volume of

subdivision element, εI is nodal average strain and εeI is subcell strain, α (0 ≤ α ≤ 1)

is a stabilization parameter, and D̃ is a positive-definite material tensor which could be

different from D. The subcell strain is computed by applying the discrete gradient formula

to a subdivision element. Puso and Solberg recommended the following parameters for

isotropic elasticity:

α = 0.05, µ̂ = µ, λ̂ = min(λ, 25µ).

and these parameters were used in the present study. The detail of the formulation is

contained in [23]. No stability treatment was implemented for finite strain yet.

3 Point-cloud method

This point cloud method consists of the following steps:

1. Point-cloud registration: converting image pixels into material points.

2. Tessellation: implementing Delaunay triangulation to the extracted point-cloud.

3. Modification: removing spurious boundary triangles or tetrahedron.

4. Analysis: applying the discrete method to the point cloud.

5. Postprocessing: reporting displacement, stress etc. at every point.

The method utilizes Delaunay tessellation to generate a simplex mesh for the purpose

of identifying the neighboring set and determining the point volume. Although a mesh

is generated, the method is not element-based because element-wise assumed solution in

not constructed. The DGM solver is more tolerant to mesh distortions. It has been
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demonstrated in [2] that DGM is less sensitive to mesh distortions due to the utility of

average strain. In a triangular mesh, for example, the nodal strain turns out to be a

weighted average of element strains from the surrounding elements and by construction,

a skewed element will carry a relatively smaller weight. For this reason, simplex meshes

from Delaunay tessellation are directly permitted.

It is also worth noting that, although Delaunay tessellation is implemented in this study,

it is not a pre-requisite for the point cloud method. Unlike a random point set, image data

come with a pre-existing adjacent relation between points. For a given point, one can iden-

tify its adjacent neighbors from their index in the image array, and this information suffices

to establish a neighboring relation. An alternative formulation that bypasses tessellation

will be reported elsewhere.

3.1 Point cloud registration

We utilize a threshold-based segmentation method to register image points that are sup-

posed to belong to a specific organ. This method is perhaps the most primitive method of

image registration. However, it appears to be adequate for our application because only a

point cloud is sought. We assume that a material constituent comprise of pixels within a

certain range of gray-scale values. The spatial region which contains the segmented organ

is first manually identified. Then, pixels within given thresholds are isolated and an initial

point cloud is formed. The physical coordinates are inferred from the image resolution

(distances between pixels and slices).

Coarser models can be obtained by lumping several pixels into a point. This is imple-

mented using a moving window technique. In 2D a window is a square region containing

n× n pixels. In 3D, a window is a cube which contains n× n×m pixels where m denotes

the number of image slices in the height direction. The position of the material point in a

window is calculated according to

x =

∑
N

I
xIϕI∑

N

I
ϕI

, (15)
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where xI is the coordinate of the center of the pixel I, ϕI is the gray-scale value, and N

the number of pixels in the window. Figure 3 illustrates an example of this utility. Note

that the reduced cloud in general no longer forms a regular grid.

(a) (b)

Figure 3: Example of point-grouping. (a) Original point cloud; (b) Reduced cloud.

Figure 4 shows a cross sectional CT (Computed Tomography) scan of an aorta with

0.2 mm resolution. By examining the gray-scale values, it was determined that pixels in

the range of 200-255 correspond to the aorta tissue. These points were selected and the

resulting pixel-resolution point cloud is shown in Figure 5(a). Notably, the segmentation

process requires minimal user interference. A reduced cloud containing 895 points is shown

Figure 5(b). It was extracted using 3 × 3 windows, which are 0.6mm × 0.6mm in spatial

resolution.

3.2 Tessellation

The open source program Qhull [29] is employed to perform Delaunay tessellation on point

clouds. The algorithm is distance-based; for points on a concave boundary the algorithm

will produce spurious triangles or tetrahedrons. Figure 7(a) shows Delaunay triangles

formed by Qhull on a set of points. It is clearly seen that several points across the bay are

wrongly connected, creating spurious triangles that needs to be eliminated.

For an arbitrary cloud, an available method for modifying the boundary of Delaunay

mesh is so-called α-shape introduced by Edelsbrunner [30, 31]. α-shapes provide the math-

ematical framework and a general algorithm to define the hierarchy of point clouds through
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Figure 4: CT scanning image of aorta cross section

(a) (b)

Figure 5: Aorta point clouds extracted from image: (a) Pixel resolution; (b) 9-fold reduc-

tion using 3 × 3 window.
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Delaunay triangulation. Some applications of α-shape can be found in [32, 33]. For image-

based point clouds there is a pre-existing adjacent relation between the pixels or windows;

upon which the modification can be readily implemented. Below, we propose an efficient

algorithm for image-based point clouds.

Two-dimensional triangular tessellation

For point arrays derived from images, each window (or pixel) is always surrounded by a

number of adjacent windows (pixels). One can identify all points in adjacent windows

as the adjacent points. For example, in Figure 6, the point A is fully surrounded and

has eight adjacent points while the point B has seven. With this adjacent relationship,

one can define an admissible triangle by the criterion that at least one of its vertices is

simultaneously adjacent to the other two. Conversely, if none of the vertices is adjacent

to the other two points, the triangle is deemed spurious and will be removed. Applying

this procedure to the point cloud in 7(a), several triangles in the bay and on the upper

boundary were deleted, resulting in the modified mesh in Figure 7(b). Note that, in this

process, the boundary of the domain is automatically formed.

Prior to tessellation, any “hanging point” must be deleted. These are the points that

are not properly connected to the rest of the cloud. In two-dimensional case, if a point has

less than two adjacent points, it is a hanging point and should be removed from the cloud.

A B

Figure 6: Adjacent points.
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(a) (b)

Figure 7: Delaunay triangulation of point clouds: (a) Before removing spurious triangles;

(b) After removing spurious triangles.

Three-dimensional tetrahedral tessellation

The same logic applies to a 3D tetrahedron mesh, in which case a material point have

at most 26 adjacent points. Any point having less than three adjacent points is deemed

a hanging node and will be deleted prior to tessellation. We adapted a criterion for an

admissible tetrahedron such that at least one of its vertices is simultaneously adjacent to

the other three. Note that, according to this criterion, an admissible tetrahedron could

contain facets of which none of the vertices are adjacent to each other. It is possible to

adapt more stringent criteria, for example, requiring all facets containing mutually adjacent

points, but we found that the present criterion appears to be adequate, at least for the

applications considered in this work. In particular, it results in reasonably good boundary

depiction for the skull model discussed later.

4 Examples

4.1 Static analysis: inflation of aorta

We use this example to make a compare with finite element method. The point-cloud in

Figure 5(b) is assumed to represent the stress free configuration of an aorta cross section.

Although aortic tissue exhibits anisotropic behavior, for demonstration purpose, we model
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the wall tissue by an isotropic hyperelastic energy function

W =
µ1

2
(I1 − 3) +

µ2

4
(I1 − 3)2 ,

where I1 = tr (FTF), F is the deformation gradient and J = detF. A penalty energy

κ

2 (log(J))2 with a large value κ is augmented to the energy function to introduce nearly

incompressibility. The following numerical values are used:

µ1 = 100, µ2 = 5, κ = 1000000 .

We ignore the residual stress which is known to exist in aorta. Plane strain condition is

assumed, and in-plane displacement boundary conditions just enough to eliminate rigid

body motion are imposed. A 100mmHg follower pressure is applied on the lumen surface.

For comparison, a FE model of comparable mesh density consisting of four-node mixed

element [34] was introduced. Figure 8 shows the distributions of the von Mises stress from

the two models. Since the nodes in the two models do not correspond, there is no effective

way to make a node-wise comparison. But by a visual inspection, the stress results agree

well. It should be noted that nodal stresses in the point cloud model are taken directly

from the pointwise stress value without smoothing, and yet, the stress distribution appears

to be reasonably smooth. In addition, as also demonstrated in previous works, the dis-

crete method appears to be locking-free in the limit of incompressibility and no additional

algorithmic treatment is necessary for dealing with nearly incompressible materials.

4.2 Dynamics test: transient response of a cantilever beam

While the behavior of DGM in static analysis has been thoroughly investigated in early

studies [1, 2], the dynamics capability was tested only in modal analysis [23]. As a precursor

to impact analysis, here we test the transient capability using the cantilever system in

Figure 9(a). The beam has a length 10 and a width 0.2, loaded by a tip force F = sin 25t.

The material is elastic, with E = 5 × 104, ν = 0.3, and mass density ρ = 1.0 × 10−6. The

transient response is obtained using the Newmark method of β = 0.5 and γ = 0.5. Figure
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(a) (b)

Figure 8: Von Mises stress in aorta cross section. (a) Point cloud model; (b) FEM model.

9(b) shows the tip displacement from DGM and FEM. It is evident that, while the phases

are in good agreement, DGM over-predicts the tip displacement. This finding is consistent

with the theoretical analysis on similar discrete methods [20, 21].

F

(a)

t

U
y
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0
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2E-06

FEM
DGM

(b)

Figure 9: Cantilever beam subject to time dependant load: (a) Model; (b) Tip displace-

ment.

4.3 3D large deformation test: twist of a cantilever beam

A cantilever beam subjected to large twist is simulated using both DGM and finite element

method. As shown in Figure 10, the free end of the 8 × 1 × 1 beam is subjected to an

end-displacement that produces a rigid rotation of 360◦. The beam is made of hyperelastic

16



material described by the energy function

W =
µ

2
(I1 − 2 log J − 3) +

κ

2
(log J)2,

where µ = 192.3, κ = 288.5. The two models have the same nodal density and the finite

element model contains 270 brick elements. The deformed configurations of the beam are

Figure 10: Three dimensional cantilever beam subject to an end-twist.

presented in Figure 11. As seen from the figure, the deformations predicted from the two

methods agree well with each other. To provide a quantitative assessment, the torques as

a function of the twisting angle are computed and compared in Figure 12. Evidently, the

results are in excellent agreement.

(a) (b)

Figure 11: Deformed configurations at 360◦ twist: (a) DGM; (b) FEM.
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Figure 12: Comparison of torques.

4.4 Impact analysis: stress wave in skull

The propagation of stress wave in a three-dimensional skull under a point impact is pre-

sented. To obtain a point-cloud, a life-size plastic skull was scanned by a CT with 0.4 mm

resolution between pixels and slices. The entire image stack contains 400 CT images. Each

image has 512 × 512 pixels. A 4 × 4 × 4 window is utilized in point extraction. Figure

13 shows different views of the three dimensional point-cloud. The registration is fully

automatic.

Although it is possible to estimate density and elastic modulus of the material at any

particular location with the CT data [35], we assume that the material is homogeneous, and

isotropic linear elastic with the properties E = 11 GPa, ν = 0.35, and ρ = 1.6×103 Kg/m3.

A transient pressure is applied over a small region in the forehead. Again, Newmark method

is utilized for time integration. The predicted stress wave is depicted in Figure 14. Clearly,

a propagating stress wave is captured. The problem was solved using the point cloud

method alone, and no comparison was made with FEM.
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(a) (b) (c)

Figure 13: Three dimensional skull model extracted from CT images: (a) Front view; (b)

Isometric view; (c) Bottom view.

5 Concluding Remarks

We introduced a point cloud method for the stress analysis in biological systems. The

method takes as the geometric input a point cloud derived from medical images, and

utilizes DGM as the mechanical solver. The latter computes the pointwise strain using

discrete differentials involving the nodal displacements of a set of neighboring points. The

neighboring relations as well as the point volumes are provided by Delaunay tessellation.

Despite the utility of tessellation, the method is not element-based because element-wise

assumed solution is never constructed. A distinct feature of this method is that the entire

process can be carried out with minimal user interference or even fully automatically. This

is significant for applications where a timely analysis is desired. We also demonstrated in

this and previous studies that the discrete solver has comparable accuracy as low order

finite elements.

A limitation of the present method lies in the use of Delaunay tessellation. Although

utilized in this study, Delaunay tessellation is not a pre-requisite for the method. To set

up the discrete equations, the essential information one needs is a neighboring relation and

the point volume. These pieces of information can be inferred from medical images and

therefore a truly point-based analysis is possible. Research in this direction in underway
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Figure 14: Von Mises stress wave propagation: (a) t = 5.0E10−5 Sec.; (b) t = 5.5E10−5

Sec.; (c) t = 6.0E10−5 Sec.; (d) t = 6.5E10−5 Sec.; (e) t = 7.0E10−5 Sec.; (f) t = 7.5E10−5

Sec.
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and will be reported in a forthcoming paper.
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