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ABSTRACT

The main focus of this paper is to further improve the per-
formance of the recently introduced higher degree total vari-
ation (HDTV) penalties, which are L

1

-L
p

; p � 1 norms of
directional image derivatives. We generalize this class as the
L

1

-L
p

norms of image responses to rotated versions of an
arbitrary derivative operator. We show that several penalties
proposed by other researchers are special cases of the gener-
alized isotropic penalties (p = 2), when the derivative oper-
ator is chosen appropriately; our experiments show that the
anisotropic (p = 1) versions of these penalties provide im-
proved reconstructions. In addition, we optimize the deriva-
tive operator for improved orientation selectivity, thus further
improving the ability of the resulting penalties to provide high
quality image reconstructions. We also focus on the efficient
discretization of HDTV penalties, which are specified in the
continuous domain. Specifically, we approximate the deriva-
tive operators as the sum of partial derivatives of an almost
isotropic B-spline window. Our numerical experiments con-
firm the benefit of the improved discretization and the opti-
mization of the operator.

Index Terms— Higher degree total variation, B-spline,
compressed sensing

1. INTRODUCTION

The total variation (TV) regularization penalty is widely used
in several biomedical imaging applications, including image
denoising, deblurring, and reconstruction [1]. Since TV regu-
larization favors images with sparse first order derivatives, the
reconstructed images often suffer from staircase and patchy
artifacts. To overcome this problem, we introduced a class of
image regularization penalties termed as HDTV functionals
[2]. The HDTV penalties are essentially the L

1

-L
p

; p � 1

norm of the n

th degree directional image derivatives. We
showed that this class of penalties inherit the desirable prop-
erties of standard TV regularizers, including preservation of
discontinuities, invariance to rotations and translations, and
simplicity. We also introduced efficient image reconstruction
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algorithms, which exploit the rotation steerability of direc-
tional derivatives. The validation of the HDTV scheme on
denoising and MR image recovery shows that the completely
separable anisotropic (when p = 1) HDTV (termed as A-
HDTV) provides consistently improved reconstructions com-
pared to standard TV, current second degree regularization
penalties, HDTV penalty with p > 1, and wavelet regular-
ization. The main focus of this work is to further improve
the performance of A-HDTV penalty in practical biomedical
problems by (a) considering generalized derivative operators
and (b) by efficiently discretizing the penalty.

We generalize the HDTV penalties by considering rota-
tions of general steerable differential operators, which are
linear combinations of nth degree partial image derivatives.
Since the directional derivative is the rotation of a high de-
gree differential operator, the previous HDTV penalties are
special cases of the generalization. We show that the general-
ized family of HDTV penalties includes many of the current
regularization functionals introduced by other researchers
[3, 4], when p = 2. We observe that the performance of
these schemes can be further improved by considering the
corresponding anisotropic penalties (p = 1). In addition, we
introduce a design procedure to improve the HDTV penalty.
Specifically, we optimize the shape of the steerable deriva-
tive operator, which is used in the penalty, to improve its
orientation selectivity. Operators with improved orientation
selectivity can provide better preservation of line-like, elon-
gated features (edges and ridges) in the image.

In our earlier work, we specified the HDTV penalties
in the continuous domain [2], similar to the classical TV
penalty; the image was assumed to be a function f(x) of the
real variable x, while the penalty is the continuous integral of
the norms. We now focus on the discretization of this penalty
and study the effect of discretization on the quality of the re-
constructions. We observe that the standard finite difference
approximation of partial derivatives, which is widely used in
standard TV methods, is not rotation steerable. Specifically,
the directional derivatives of the image along any orientation
cannot be expressed as the weighted linear combination of the
partial derivatives obtained using finite differences. Hence,
the discretization of the TV and HDTV penalties using such
operators is a poor approximation of the continuous domain
formulation; this will in turn translate to poor reconstruc-



tions. We propose to use partial derivatives of tensor product
of B-spline windows to approximate the partial derivatives,
in an effort to improve the steerability of the operators. Since
B-spline windows are approximately isotropic, its partial
derivatives are approximately steerable. At the same time,
the discrete operators closely approximate the derivatives.

We compare the utility of the proposed penalties in the
context of MR image recovery from sparse Fourier samples.
We observe that the higher degree anisotropic (p = 1) penal-
ties considerably reduced the patchy image artifacts in the re-
constructions. We observe that using partial derivatives of B-
spline windows provides improved reconstructions compared
to classical finite difference approximations, thanks to the im-
proved rotation steerability of such operators. We also ob-
serve that the use of optimized derivative operators provide
better preservation of line-like features in the image.

2. BACKGROUND

We consider the recovery of a continuously differentiable
complex image f from its noisy and undersampled measure-
ments b, specified by b = A(f) + n. Here, n is Gaussian
distributed white noise with the standard deviation of �. One
way to solve this ill-conditioned problem is to pose it as an
optimization problem:

ˆ

f = argmin

f

kA(f)� bk2 + �J (f)| {z }
C(f)

. (1)

The parameter � is chosen such that kA(

ˆ

f)� bk2 ⇡ �

2. The
standard TV regularization is essentially the L

1

norm of the
image gradient, which is specified as J

1

=

R
⌦

|rf(r)|dr. We
derived the higher degree total variation (HDTV) regulariza-
tion penalties in [5, 2]:

J
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(f) =

Z
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(r)|p d✓
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p

dr (2)

where f

✓,n

(r) is the rotation steerable n

th order directional
derivative along the unit vector u

✓

= (cos ✓, sin ✓). Note that
(2) is a fully separable L

1

-L
1

penalty when p = 1, which is
thus called anisotropic HDTV (A-HDTV). Our experiments
show that the A-HDTV penalty provides better image recon-
structions than other HDTV penalties (p > 1), mainly be-
cause it is completely separable and hence is capable of better
smoothing along line-like image features . We term the case
with p = 2 as the isotropic version (I-HDTV).

3. THEORY

3.1. Generalized HDTV using derivative operators

The higher degree TV penalty in (2) is the sum of the norms
of the directional image derivatives; the second degree direc-
tional derivative operator along a specific orientation is es-
sentially the rotated version of the second derivative along

the y axis. We now generalize this class by considering the
rotated versions of an arbitrary differential operator. We fo-
cus on second order case in this paper. The general oper-
ator in the space of second degree derivatives is given by
D

0,2

(r) = ↵

1

@

xx

(r) + ↵

2

@

yy

(r) + ↵

3

@

xy

(r). The gen-
eralized second degree TV penalty for p � 1 is specified by

GD,p

(f) =

Z

⌦

✓
1

2⇡

Z
2⇡

0

|D
✓,2

(r) ⇤ f(r)|p d✓
◆ 1

p

dr, (3)

where D
✓,2

(r) is the rotated version of this operator. We now
show that this definition includes many of the current exten-
sions of standard TV norm, when p = 2.

3.1.1. Laplacian penalty

The operator D
0,2

(r) = @

xx

(r) + @

yy

(r) is the Laplacian
when ↵

1

= ↵

2

= 1;↵

3

= 0. The corresponding penalty

GD,2

(f) =

Z

⌦

|4f(r)|dr, (4)

was introduced for image denoising in [4]. This penalty term
has two major disadvantages. First of all, it has a large null
space. Specifically, any function that satisfies the Laplace
equation (4f(r) = 0) will result in GD,2

(f) = 0. As a re-
sult, the use of this regularizer to constrain general ill-posed
inverse problems is not desirable. Another problem is that the
detector being isotropic, its use results in the enhancement of
point-like features rather than line-like features.

3.1.2. Lysaker’s second degree penalty

Another interesting case corresponds to ↵

1

= 1, ↵
2

= 2

p
2�

3, and ↵

3

= 0. The isotropic (p = 2) penalty is thus given by
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(5)
where f

✓

?
,2

(r) is the second derivative of f along ✓

?
=

✓ +

⇡

2

. Using the rotation steerability of second degree direc-
tional derivatives f

✓,2

(r) = f

xx

(r) cos

2

✓ + f

yy

(r) sin

2

✓ +

2f

xy

(r) cos ✓ sin ✓, the expression for GD,2

(f) simplifies to

GD,2

(f) = c

Z

⌦

q
|f

xx

(r)|2 + |f
yy

(r)|2 + 2 |f
xy

(r)|2 dr.

(6)

where c =

q
(6� 4

p
2). This functional can be expressed

as GD,2

(f) =

R
⌦

kr2

fk
F

dr, where r2

f is the Hessian ma-
trix of f(r) and k · k

F

is the Frobenius norm. This second
order penalty was proposed by [3]. (6) can also be thought
of as the straightforward extension of the classical second-
degree Duchon’s seminorm [6]. Our experiments demonstrate
that the corresponding anisotropic penalty GD,1

(f) provides
superior reconstructions than GD,2

(f). We will consider the
derivation of the optimal penalty in Section 3.2.1.



3.2. Steerable approximation of derivatives

The TV and HDTV penalties are essentially defined for con-
tinuous images, using continuous domain differentials and in-
tegrals. For practical implementations, the standard practice
is to approximate the derivatives using finite differences. For
example, the derivative of the 2-D signal along the x dimen-
sion is approximated as q[k, l] = f [k+1, l]�f [k, l] = 4

1

⇤f .
This approximation can be viewed as the convolution of f by
4

1

[k] = '

�
k +

1

2

�
, where '(x) = @�

1

(x)/@x [7]. Here
�

1 is a linear B-spline function. Note that this approximation
does not possess rotation steerabilty; the first degree discrete
directional derivatives cannot be obtained as the linear com-
bination of the finite differences along x & y directions.

To obtain discrete operators that are approximately rota-
tion steerable, we approximate the partial derivatives of the
signal as the convolution of the signal with the partial deriva-
tives of a window, which is the tensor product of Bspline func-
tions:

q

n1,n2 [k1, k2] =

⇥
�

d
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].

(7)
Here �

d

n

(x) denotes the n

th derivative of a d

th degree B-
spline. We choose d = n

1

+ n

2

and

� =

⇢
1

2

if d is odd
0 else (8)

Higher order tensor product B-spline functions approximate
Gaussians and hence are approximately isotropic. Thus, the
derivatives of B-spline functions are approximately rotation
steerable. The shift � is chosen to obtain short filters; the
shift implies that we are evaluating the image derivatives at
the intersection of the voxels and not at the voxels midpoints.
While the proposed discrete operators are not steerable in the
strict sense, this approximation is better than the current finite
difference schemes.

3.2.1. Optimization of the derivative operator

We now optimize the orientation selectivity of the second de-
gree operator D

0,2

(r) = ↵

1

�

2

2,0

(r) + ↵

2

�

2

0,2

(r) to improve
the penalty. Ideally, the steerable operator should behave as
a derivative operator along the y direction, while it should be
maximally elongated along x direction. The improved ori-
entation selectivity of the detector will encourage the preser-
vation of line-like features (edges/ridges) in the image. The
ideal 3 ⇥ 3 discrete operator Dideal(r) is shown in Fig.1.(a).
Since this detector is not rotation steerable, we will deter-
mine the parameters of the operator D

0,2

(r) = ↵

1

�

2

2,0

(r) +

↵

2

�

2

0,2

(r) to approximate Dideal(r).
We determine the parameters of D

0,2

such that kDideal(r)�
Dopt(r)k2 is minimized. We normalize the coefficients ↵

1

and
↵

2

such that kDopt(r)k2 = 1. As a result, the optimal operator

 

(a) Dideal

 

(b) B-spline

 

(c) optimized B-spline

Fig. 1. Different discrete second order derivative operators (along
the y direction.) (a) is the ideal finite difference approximation Dideal,
which is maximally elongated along x. (b) is the second derivative
of the quadratic tensor-product B-spline �

2
2,0. (c) is the optimized

elongated B-spline operator Dopt. Compared with ideal operator (a),
the B-spline derivative operator (b) is more steerable. The optimized
B-spline operator (c) inherits the property of approximate steerabil-
ity of (b), while being more elongated compared to (b).

Dopt(r) can be determined as:
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such that kDoptk2 = 1

Using Lagrange multipliers, we reformulate this problem as:

argmin
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We thus obtain the optimized second degree operator as
Dopt = 0.5895�

2
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. Thus, the corresponding
directional derivative is specified by
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Substituting (11) into (2), we obtain the corresponding opti-
mized HDTV penalties. The ideal operator Dideal, standard B-
spline derivative �2

2,0

, and optimized detectors Dopt are shown
in Fig. 1. Note that the optimized operator is more elongated
than the standard B-spline discrete differential operator.

4. RESULTS

In order to determine the utility of the improved TV and
HDTV penalties, we apply the proposed schemes in the
context of compressed sensing recovery of MRI data. We
retrospectively downsample fully sampled MRI datasets us-
ing a variable density random sampling pattern such that the
acceleration is approximately A = 4.35. We choose the reg-
ularization parameter � such that kA(

ˆ

f) � bk2 ⇡ �

2. We
compute the signal to error ratio (SER) of the reconstructions
as

SER = �10 log

10

 
kf

orig

� ˆ

fk2
F

kf
orig

k2
F

!
, (12)



(a) original

 

(b) TV(fd): 22.6dB

 

(c) TV(Bs): 23.8dB

 

(d) HDTV(fd): 19.9dB

 

(e) HDTV(Bs) 24.3dB

 

(f) HDTV(op) 24.6dB

Fig. 2. Comparison of different derivative approximation operators.
(a) is the actual brain MR image. (b) and (c) show the TV recon-
structions using finite difference operator (fd) and B-spline operator
(Bs), respectively. (d), (e), and (f) show the HDTV reconstructions
using finite difference, B-spline, and the optimized B-spline operator
(op), respectively.

where ˆ

f is the reconstructed image; f
orig

is the original im-
age; k · k

F

is the Frobenius norm.
We compare the TV & HDTV based schemes in Fig. 2

using a brain MR image. We show the reconstructions of
the image using standard TV penalty with finite difference
approximation and B-spline operator, while we compare the
finite difference operator, the B-spline operator, and the pro-
posed optimized B-spline operator, in the context of HDTV
penalty. The original image is shown in (a). We observe that
for TV penalty, the B-spline operator approximation (c) pro-
vides better ridge/edge preservation, compared to the finite
difference approximation (b), indicated in green arrows. Sim-
ilarly, for HDTV penalty, the finite difference operator based
reconstruction (d) is more blurred than the B-spline operator
reconstruction (e). In contrast, the optimized B-spline opera-
tor preserves the ridges better than standard B-spline operator
(see blue arrows). Fig. 3 compares the reconstructions of a
MR wrist image using TV & HDTV regularization with dif-
ferent derivatives approximation operators. We observe that
using B-spline operators, the SER is improved by around 2-
3dB than finite difference operator. The optimized B-spline
operator captures the subtle details more effectively and im-
proves the SER by 0.2dB over the standard B-spline operator.

5. CONCLUSION

We generalized the HDTV penalties by considering rotated
versions of an arbitrary derivative operator instead of direc-
tional derivative operators. We show that many of the current
higher degree penalties are special cases of the generalized
isotropic HDTV penalties. Our experiments show that the
anisotropic counterparts of these schemes provide improved

 

(a) original

 

(b) TV(fd) 20.6dB

 

(c) TV(Bs) 22.1dB

 

(d) HDTV(fd) 19.0dB

 

(e) HDTV(Bs) 22.3dB (f) HDTV(op) 22.5dB

Fig. 3. Comparison of different derivative approximation operators.
The original wrist MR image is shown in (a). (b) and (c) illustrate
the TV reconstructions using finite differences (fd) operator and B-
spline (Bs) operator, respectively. (d) to (f) show the HDTV recon-
structions using finite differences operator, B-spline operator and the
optimized B-spline (op) derivative operator, respectively.

reconstructions. We also optimize the derivative operator to
improve its orientation selectivity, thus further improving the
performance of the resulting HDTV penalty. We also consider
efficient discretization of the penalties, which are specified in
the continuous domain. Our numerical experiments show a
significant improvement in performance, offered by the im-
proved discretization and optimization of the penalty.
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