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ABSTRACT
We introduce an regularized reconstruction scheme to recover
dynamic imaging datasets with significant inter frame mo-
tion from undersampled Fourier data. The proposed non-
local regularization penalty is an unweighted sum of distances
between image patch pairs in the 3-D dataset. We use ro-
bust distance metrics to compute the distance between im-
age patches; these metrics encourage the smoothing between
similar patches, while discouraging the averaging of dissimi-
lar patches. Hence, this algorithm is capable of exploiting the
similarities between patch pairs in adjacent frames even when
they are well separated due to motion, eventhough it does not
perform explicit motion estimation. Unlike current non-local
regularization schemes, the proposed penalty does not need
good initial guesses to estimate the weights. Hence, this ap-
proach is readily applicable to accelerated dynamic imaging
problems, where good initial guesses are challenging to ob-
tain. The validation of the proposed scheme on numerical
phantoms and dynamic MRI datasets demonstrate the supe-
rior performance of the proposed scheme over current dy-
namic imaging schemes.

1. INTRODUCTION

The imaging of time varying phenomenon is a key applica-
tion in several imaging modalities (eg. cardiac MRI, in-vivo
microscopy). It is often difficult to simultaneously achieve
high spatial and temporal resolutions in dynamic imaging,
especially when there is significant inter frame motion (e.g..
free breathing cardiac perfusion MRI). Several dynamic MRI
schemes that share data between adjacent frames (e.g. sliding
window and temporal smoothing schemes) were introduced
to reduce the data demand [1, 2]. However, effectiveness of
these data-sharing methods degrade considerably with inter
frame motion, since the local similarity (similarity between
corresponding pixels in adjacent frames) will be lost. How-
ever, note that there is still considerable similarity between
adjacent image frames, since we are imaging a specific ob-
ject or objects that are evolving in time. To exploit this re-
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dundancy, several researchers have recently introduced algo-
rithms based on motion estimation and motion compensation
(ME-MC) methods [3, 4]. These algorithms explicitly model
the deformation field between adjacent frames. They alternate
between motion estimation and motion compensated recon-
struction steps to simultaneously recover the dynamic imag-
ing dataset and the motion model. The main challenge asso-
ciated with these approaches is the lack of a unified energy
minimization framework for the entire setup; since the ME
and MC steps are decoupled, it is often difficult to monitor the
convergence of the entire scheme. Moreover, the final results
are often heavily dependent on the frequency of the updates
and complexity of the motion and signal models.

We introduce an energy minimization framework to re-
cover the dynamic imaging dataset from very few samples.
Unlike ME-MC methods, the proposed scheme does not ex-
plicitly model and estimate the deformation field. The central
idea of the proposed scheme is illustrated in Fig. 1. We pose
the recovery as a regularized reconstruction scheme, where
the non-local regularization penalty is an unweighted sum of
distances between image patch pairs in the 3-D dataset. For
each patch in a specified frame, the summation includes dis-
tances between itself and the patches in a cube shaped neigh-
borhood around it. We use robust distance metrics to compute
the distance between image patches; these metrics encourage
the smoothing between similar patches, while discouraging
the averaging of dissimilar patches. If the image region corre-
sponding to the specified patch has moved to another region
within the search window, the algorithm is able to capital-
ize on the redundancy between these patches to significantly
decrease the aliasing artifacts. In contrast, local smoothing
schemes only involve differences between the intensities of
the adjacent pixels in the dataset and is not capable of ex-
ploiting this redundancy.

This work is built upon the unified non-local image reg-
ularization scheme introduced in our earlier work [5], which
is also similar to [6]. The main difference of the framework
in [5] with classical non-local schemes is the independence
of the penalty on pre-specified weights. Classical non-local
schemes estimate the inter-patch weights from an initial
guess [7]. Since the proposed penalty is independent of
predetermined weights, it is readily applicable to heavily
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Fig. 1: Illustration of the proposed dynamic imaging penalty: The
penalty is an unweighted sum of distances between patch pairs in the
3-D dataset. For a specified image patch, the penalty involves the
distances between itself and other patches in its cube shaped neigh-
borhood. The robust distance metric � is capable of exploiting the
redundancy between similar patches, while excluding the dissimi-
lar patches from averaging. Hence, the algorithm can capitalize on
the similarity between the corresponding patches, even if they have
moved to another location. The blue squares indicate the location of
the square in frame 2, while the red squares are the ones with the
highest similarity with the red square in frame 2.

under-sampled dynamic imaging problems, even when good
initial guesses to estimate the weights are not available. We
have shown that the first iteration of the proposed scheme
to be similar to classical non-local schemes; since the pro-
posed scheme is iterative, it is capable of further improving
the performance. The proposed dynamic imaging algorithm
have some similarity to the non-local scheme of Adluru et
al., who used a combination of two non-local penalties: the
first 2-D penalty exploits the similarity of patches within the
same frame, while the second 1-D non-local penalty exploits
the similarity of the intensities of a specific voxel along time.
Since the temporal non-local term is 1-D in nature, this ap-
proach is not capable of exploiting the similarities between
image regions in adjacent frames, especially when large mo-
tion is present. Since we use a fully 3-D non-local scheme,
our algorithm is capable of fully exploiting the redundancy
between adjacent frames (see Fig. 1). We demonstrate the
utility of this scheme in the context of free breathing CINE
MRI data. The comparisons demonstrate that the proposed
scheme is capable of achieving high accelerations with min-
imal blurring, when the local TV method results in consider-
able blurring.

2. ROBUST NON-LOCAL REGULARIZATION OF
DYNAMIC IMAGING PROBLEMS

We pose the nonlocal regularized reconstruction of the dy-
namic dataset f(x, t) from its sparse Fourier measurements
b = Af as the optimization problem:

f̂ = argmin
f

kAf � bk22 + � G(f). (1)

Here, x is the spatial variable and t denotes the temporal vari-
able. We assume (x, t) 2 ⌦, where ⌦ = [0, N

x

] ⇥ [0, N
y

] ⇥

[0, T ]. The regularization penalty in (1) is specified by
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�(kP(x,t)(f)� P(y,t)(f)k⌘). (2)

Here, � is an appropriately chosen robust distance metric (see
Fig. 2). The term P(x,t)(f) denotes a patch of the 3-D vol-
ume, which is centered at the point (x, t). We denote the size
of the patch as N

p,x

⇥N

p,y
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p,t

. The pixel locations of this
patch are indicated by B

x,t

. The size of the patch is smaller
than the of the search window N(x,t), whose dimensions are
indicated by N

w
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⇥ N

w,y
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(see Fig. 1). Note
that the nonlocal penalty G(f) is not dependent on any apriori
selected weight function. Hence, the new framework can be
readily applied to under-sampled dynamic imaging problems,
where good initial guesses are difficult to derive.

2.1. Relation to current non-local schemes

We majorize the proposed penalty term G(f) by a simpler
quadratic surrogate functional:

�

�
kP(x,t) � P(y,t)k⌘

�
 w

f

(x,y) kP(x,t) � P(y,t)k2
⌘
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(3)
where w

f

(x,y) is specified by

w

f

(x,y) =  

�
kP(x,t)(f)� P(y,t)(f)k⌘

�
, (4)

where  (x) = �

0(x)/2x. Ignoring the constant b in (3) for
simplicity, the quadratic surrogate functional that majorize the
actual penalty becomes

G
wn(f) =

X

(x,t)2⌦

X
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�

f

(x,y) |f(x)� f(y)|2 (5)

where the weights �
f

are specified by

�

f

(x,y) =
X

p2B
x

⌘(p)w
f

(x� p,y � p) . (6)

Note that the expression of the surrogate criterion G
w

in (5) is
very similar to classical non-local penalties. We have shown
in [5] that most of the current non-local schemes can be in-
terpreted as the first iteration of the proposed scheme, if the
penalty functions (�) can be chosen appropriately to match
the expression for the weights. The distance metrics and
the corresponding weight functions, corresponding to current
non-local schemes, are plotted in Fig. 2.

2.2. Majorize minimize (MM) algorithm

We use the majorization of the regularization penalty, intro-
duced in Section 2.1, to develop a two-step alternating algo-
rithm. The algorithm alternates between the solution of the
quadratic surrogate problem:

f̂

n+1 = argmin
f

kAf � bk22 + �

Gw(f)
z }| {
f

T

�

n

f

| {z }
Cn+1

. (7)
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Fig. 2: Comparison of the distance metrics � and corresponding
weight functions  (a) and (b). We compute these distance functions
such that the first iteration of the proposed scheme matches the cur-
rent non-local algorithms (eg. NLTV, NLH1, Peyre’s method). Note
that these distance functions saturate with Euclidean inter-patch dis-
tance, thus preventing the averaging of dissimilar patches. Our ex-
periments show that these non-convex schemes provide good recon-
structions, if appropriate continuation schemes are used.

and the estimation of the weights from the current iterate as
w

fn(x,y) =  (kP
x

(f
n

)� P

y

(f
n

)k
⌘

). Here, f is the vec-
torized image, A is the matrix operator corresponding to the
forward model, and �

n

is the sparse matrix with the entries:
�

n

(x,y) = �

fn(x,y). Here, �
fn(x,y) is the sum of simi-

larity measures w(x,y) using (6). Note that the optimization
criterion in (7) is a quadratic. We solve this using conjugate
gradients optimization.

Different majorizations of the criterion in (1) may be con-
sidered to obtain alternate MM algorithms, similar to shrink-
age based algorithms in compressive sensing. For example,
the data consistency term can be majorized to decouple the
problem into a steepest descend update, followed by a non-
local smoothing. The non-local smoothing can be performed
iteratively using fixed point iterations [6]. Another option is
to majorize both the data and penalty terms. The resulting
algorithm involves one steepest descend update, followed by
one fixed point step as in [8]. However, both of these schemes
will involve at least one evaluation of weights per steepest-
descend step. The computation of the weights in non-local
algorithm involves the evaluation of the distances between all
patch pairs. In contrast, each of the CG steps involves three
FFTs (in Fourier inversion and deblurring applications) and
a weighted linear combination of pixel values (evaluation of
�

n

f ) per iteration, which are relatively inexpensive. Since the
proposed scheme relies on one weight computation, followed
by several CG updates, we observe this algorithm to be more
computationally efficient than other methods. The compari-
son of the algorithms demonstrate that the proposed scheme
provides a 10 fold reduction in computation time, compared
to the alternate majorizations. These gains are especially rel-
evant in the context of reconstruction of 3-D datasets. Our
MATLAB implementation takes 7-10 minutes to recover the
3-D dataset in perfusion experiment (90x90x40 matrix). We
expect to further accelerate the algorithm by exploiting the
parallelism and customizing the code for graphical process-
ing units.

(a) Local TV, SNR=21.05 (b) NLTV 2D,SNR=19.74

(c) NLTV 3D,SNR=26.33 (d) Original image

Fig. 3: We reconstructed the breathing NCAT phantom images from
9.25 times undersampled k-space data using 12 lines in polar trajec-
tories. The figure shows reconstructed images of the 10th frames by
local TV Fig.(a), nonlocal 2D Fig.(b), nonlocal 3D Fig.(c). Compar-
ing with the original image Fig.(d), the nonlocal algorithms preserve
more details while standard TV introduces patchy artifacts.

3. RESULTS

We now demonstrate the utility of the 3-D non-local algo-
rithms in dynamic imaging applications. We compare this
scheme with classical local smoothing methods and 2-D non-
local schemes. We consider the recovery of the NCAT phan-
tom with both respiration and cardiac motion from 12 radial
lines per frame; the acceleration factor is approximately 9.25.
The trajectory is rotated from frame to frame to guarantee in-
coherence between the acquisitions. A single frame of the
reconstructed dataset is shown in Fig. 3. We choose a patch
size of 3x3 and a search volume of 5x5x5 for 3D NLM. In
2D NLM, we recover each frame independently, where we
choose the patch size and search window to be 3x3 and 5x5,
respectively. To ensure fair comparisons, we choose the regu-
larization parameter that provides the best reconstructions for
all methods. The experiments demonstrate that the proposed
non-local scheme provides good reconstructions with minor
artifacts. In contrast, the 3-D local TV reconstructions are
significantly blurred due to the significant inter frame motion.
Note the non-local reconstructions are crisp, but exhibit sig-
nificant distortions. Since the 3-D NL scheme can average
across time frames, it can exploit the redundancies between
the different frames and the incoherence in sampling patterns
to reduce the artifacts. We observe a 5-7 dB improvement
over the competing methods. These results clearly show the
benefit in using the proposed scheme for dynamic MRI. We
use the same algorithm to accelerate free breathing cardiac
CINE MRI data in Fig. 4. The motion between adjacent



frames is high in this dataset, in addition to the images pos-
sessing significant detail. Most of the current algorithms fail
in this case. We compare the utility of the local TV algorithm
with the 3-D nonlocal scheme in accelerating this dataset.
Here, we randomly sample the free breathing dynamic MRI
data to achieve an acceleration factor of 3. Similar to the
NCAT comparisons, the local TV reconstructions show sig-
nificant blurring. In contrast, the 3-D non-local scheme pro-
vide good quality reconstructions with minor temporal blur-
ring and preservation of small image features. It also provides
an SNR improvement of approximately 4 dB.

(a) LTV, SNR=17.04 (b) NL3D,SNR=21.01 (c) Original image

Fig. 4: We apply the proposed nonlocal algorithms to free breath-
ing MRI data set, which is undersampled randomly the acceleration
factor of 3. Noticeably, there is some residual artifacts left in the
reconstructed image by local TV Fig.(a), pointed by the black arrow,
while the nonlocal H1 Fig.(b), nonlocal TV Fig.(c) show a better
performance in reducing the undersampling artifacts and preserving
the small structure, notified by the red arrow.

Finally, we apply our 3D nonlocal algorithm to free
breathing perfusion MRI data with a matrix size of 90 ⇥
90⇥40. The results are shown in Fig. 5. We downsample the
k-space data using golden ratio polar trajectory with 15 lines
per frame, corresponding to a 6.7 fold acceleration. There is
considerable motion in this dataset, mainly due to respiration
(see third row of Fig. 5). We compare the proposed algo-
rithm with 2D non-local schemes and the method of Adluru
et al. [8], which uses a combination of 2D spatial and 1-D
temporal non-local penalties. We observe that the proposed
scheme to improve the SNR by approximately 3dB. Since
this is a preliminary experiment and the tuning of parameters
is complex due to the run time of the algorithm, we expect to
considerably improve the gains in the future.

4. CONCLUSION

We introduced a robust spatio-temporal nonlocal regulariza-
tion algorithm for the dynamic MRI reconstruction. The non-
local penalty is an unweighted sum of robust distances be-
tween non-local patch pairs in the 3-D dataset. Hence, this al-
gorithm is capable of exploiting the similarities between patch
pairs in adjacent frames even when they are well separated
due to motion. The validation of the proposed scheme on
numerical phantoms and dynamic MRI datasets demonstrate
the superior performance of the proposed scheme over current
dynamic imaging schemes.
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Fig. 5: We retrospectively downsample the k-space data of a
90x90x40 perfusion MRI data set with a golden ratio radial trajec-
tory with 15 lines; the trajectory is shown in Fig.(f). The columns
represent different reconstruction algorithms. The first and second
rows show the 14th frame and the corresponding spatial error image.
The third row illustrates the time profile through the line in Fig.(p),
while the fourth row shows the error in time profiles. The ripples in
the time profiles are due to respiratory motion.

5. REFERENCES

[1] J. d’Arcy, D. Collins, I. Rowland, A. Padhani, and M. Leach,
“Applications of sliding window reconstruction,” NMR in

Biomedicine, vol. 15, no. 2, pp. 174–183, 2002.
[2] G. Adluru, R. Whitaker, and E. DiBella, “Spatio-temporal con-

strained reconstruction of sparse dynamic contrast enhanced ra-
dial mri data,” in IEEE ISBI. IEEE, 2007, pp. 109–112.

[3] S. Lingala, M. Nadar, C. Chefd’hotel, L. Zhang, and M. Jacob,
“Unified reconstruction and motion estimation in cardiac perfu-
sion mri,” in IEEE ISBI. IEEE, 2011, pp. 65–68.

[4] H. Jung and J. Ye, “Motion estimated and compensated com-
pressed sensing dynamic magnetic resonance imaging:,” Inter-

national Journal of Imaging Systems and Technology, vol. 20,
no. 2, pp. 81–98, 2010.

[5] Z. Yang and M. Jacob, “A unified energy minimization frame-
work for nonlocal regularization,” in IEEE ISBI, 2011.

[6] G. Wang and J. Qi, “Patch-based regularization for iterative pet
image reconstruction,” in IEEE ISBI, 2011.

[7] Y. Lou, X. Zhang, S. Osher, and A. Bertozzi, “Image recov-
ery via nonlocal operators,” Journal of Scientific Computing,
vol. 42, no. 2, pp. 185–197, 2010.

[8] G. Adluru, T. Tasdizen, R. Whitaker, and E. DiBella, “Improv-
ing undersampled mri reconstruction using non-local means,”
MRM, 2010.


