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ABSTRACT

Achieving simultaneously high angular and spatial resolution
in diffusion imaging is challenging because of the long acqui-
sition times involved. We propose a novel compressed sens-
ing method to acquire high angular and spatial resolution dif-
fusion imaging data, while keeping the scan time reasonable.
We show that joint under sampling of 6-D k-q space is more
efficient than undersampling only one of the dimensions. We
use a sparse Gaussian mixture model and an iterative recon-
struction scheme to recover the peaks of the orientation distri-
bution functions (ODF) with high accuracy. We show that at
least 6-fold acceleration of acquisition is possible, thereby en-
abling high angular and spatial resolution diffusion imaging
in a reasonable scan time.

Index Terms— Compressed sensing, Orientation distri-
bution function, high resolution

1. INTRODUCTION

Both high angular and spatial resolution are desirable for
accurate fiber tractography applications of diffusion imag-
ing. High angular resolution is required to accurately detect
crossing fiber architectures that co-exists in voxels [1]. Simi-
larly, high spatial resolution acquisition minimizes confounds
such as partial volume effects, thus improving the accuracy
of the parameters. The main challenge with high angular
and spatial resolution diffusion imaging is the unreasonably
long scan time. Specifically, the acquisition time increases
linearly with the number of diffusion directions. The increase
in k-space extent to achieve high spatial resolution translates
to long readouts with single shot sequences, thus making
the acquisition more sensitive to field inhomogeneity and T ∗2
distortions. It is a common practice to use multi-shot se-
quences to minimize these distortions, which again results in
increased scan time. Due to these challenges, the usual prac-
tice is to enhance the resolution of the preferred dimension,
while compromising the other.

Several methods have been suggested to accelerate diffu-
sion imaging, which can be broadly classified into two cate-
gories: uniform k-only down-sampling schemes and uniform
q-only down-sampling schemes (see Fig 1 below). Several
researchers achieved high spatial resolution of sub-millimeter

scales within reasonable scan times using parallel imaging
and under-sampling in k-space [2][3]; however the angular
resolution was restricted in these studies. Similarly, using
compressed sensing and under-sampling in the q-space, a few
groups have recently achieved high angular resolution in a
reasonable scan time [4, 5], however at low spatial resolution.
A third approach was proposed by [6],[7] where high spatial
and angular resolution was achieved. However, to reduce scan
time, the spatial coverage was compromised to a limited field
of view (FOV).

In this work, we propose a new acquisition strategy that
can simultaneously enhance the spatial and angular resolu-
tions without compromising on the FOV, while keeping the
scan time reasonable. Our approach also makes use of the
theory of compressed sensing. However, as opposed to the
previous methods where down-sampling was restricted to ei-
ther the k-space or the q-space, we propose to jointly down-
sample the combined k-q space. We use a multi-shot variable
density spiral trajectory similar to earlier schemes that acquire
high spatial resolution data [3]. However, we only acquire a
subset of the spatial interleaves for each shot. Specifically,
we under sample the k-space corresponding to each direction
randomly. Since we are jointly under sampling the k-q space,
we expect this scheme to provide improved reconstructions,
compared to schemes that only under sample one of the di-
rections. We model the multi-modal diffusion signal in each
voxel as a sparse linear combination of Gaussian basis func-
tions; this Gaussian mixture model is widely accepted in the
diffusion community [8] and is discussed in more detail in the
text. We pose the recovery of the diffusion signal from all the
voxels of the dataset as a single regularized reconstruction
problem. We use `1 penalty on the coefficients of the basis
functions to enhance sparsity, while we use a total variation
penalty on the coefficients to exploit the spatial smoothness.
Note that this approach is more robust than a voxel-by-voxel
fitting pursued by other researchers[5]. We use an iterative
re-weighted conjugate gradient (CG) algorithm to solve the
above reconstruction problem.

We demonstrate the utility of the proposed scheme by ret-
rospectively downsampling a fully sampled 60 direction spi-
ral diffusion weighted dataset with 1 mm2 in-plane resolution.
Our results show that the proposed scheme can considerably
reduce the reconstruction errors, compared to q-only down-



sampling. We demonstrate a six fold speedup with minimal
errors.

2. BACKGROUND

The measured signal, S, from a diffusion weighted sequence
can be written as a 6-D Fourier Transform of the diffusion
displacement probability density function (PDF) P, as:

S(k,q, τ) = S0

∫
x3

∫
r3
P (x, r, τ)e−2πi(k

Tx+qT r)dxdr

(1)

where S0 is the reference image, x is the spatial vector, r is
the diffusion displacement vector and {x, r ∈ R3}. τ is the
time for diffusion, k and q are the Fourier duals of x and r
vectors respectively.

It is clear from (1) that the acquisition space is a 6-D space
spanned by the k-q space, the dual space of diffusion-physical
space. In order to reconstruct the PDF accurately, one needs
to sample the combined k-q space adequately, satisfying the
Nyquist sampling criteria. Because of the high sampling bur-
den involved, reconstruction of PDF is almost never done in
practice. Instead, a derived measure, the diffusion orientation
distribution function (ODF) is used for tractography applica-
tions. ODF is the defined as the radial projection of PDF on
to a unit sphere:

Φ(u) =
1

Z

∫ ∞
0

P (ur)d(r) (2)

for direction u where Z is a dimensionless normalization con-
stant. ODFs are typically computed analytically for different
diffusion models rather than using (2).

3. THEORY

The theory of compressed sensing (CS) allows one to recon-
struct a band-limited signal from sub-Nyquist sampled data,
provided the signal is sparse. We use this postulation to re-
construct the sparse diffusion directions in each voxels from
a sub-Nyquist sampled data. CS requires three components:
an under-sampling strategy that can incoherently sample the
k-q space, a sparse model that can represent the multi-modal
diffusion and a reconstruction scheme that can recover the
diffusion peaks without aliasing artifacts. We explain each of
the three components that we used in our work below:

3.1. Joint k-q under-sampling

Previous under-sampling strategies used in diffusion imag-
ing can be broadly classified into two categories: uniform
k-only under-sampling strategies (eg: parallel imaging) and
uniform q-only under-sampling strategies (eg: collecting few
angular samples, but reconstructing at high angular resolu-
tion). These schemes decoupled the combined k-q acquisi-
tion space and performed down-sampling in only one domain.

For simultaneous improvement of resolution in spatial and an-
gular domains, under-sampling in one dimension alone does
not provide enough acceleration. We propose a joint under-
sampling of the combined k-q space as follows: the object
is sampled using relatively high number of diffusion direc-
tions, however the spatial domain of each diffusion direction
is randomly under-sampled. This approach is aimed at col-
lecting high resolution information from both domains, at the
same time reducing redundancy incoherently. We achieved
this by using a multi-shot variable density spiral trajectory
and skipping multiple random inter-leaves of the spiral when
sampling each diffusion direction. Significant savings in ac-
quisition time can be achieved using this scheme. A pictorial
representation of the various acquisition strategies is shown
in Fig 1.

Fig. 1. Various under-sampling strategies

3.2. Sparse Model for compressed sensing recovery

Typical voxel sizes in MRI are 2-3 orders of magnitude
larger than the underlying axonal structures. To represent the
heterogeneity in the orientation of these structures within a
voxel using diffusion measurements, Guassian mixture mod-
els (GMM) have been introduced in the past. A discrete
diffusion model based on the GMM was extensively studied
in [8] where a set of diffusion basis functions {ψ}, where
generated from a tensorial basis. We use this model to rep-
resent the diffusion signal in each voxel sparsely. N basis
tensors distributed uniformly in the q-space are derived from
a base tensor D which was chosen based on some realistic
assumptions. For the human brain, it is reasonable to assume
a diffusivity value of 1e−3mm2/s in the white matter voxels
and expect the longitudinal fiber diffusion to be about five
times the transversal diffusion. Based on this a base ten-
sor D = 1e−3 ∗ [1700 0 0; 0 300 0; 0 0 300] was formed.
The N basis tensors were obtained by rotating D to N unit
vectors uniformly distributed in the 3-D q-space such that
Di = Ri ∗ D ∗ Ri

T ; i = 1 : N where Ri is the rotation
matrix for the i th direction. We define the basis functions
ψi(b,g) = e−bg

TDig. Then,

S(b,g)

S0
=

N∑
i=1

fi .ψi(b,g) (3)



where S(b,g) is the diffusion signal measured using the dif-
fusion sensitizing parameter b and diffusion gradient orienta-
tion g and S0 is the attenuation-free non-diffusion-weighted
image. With the tensors D′is, being already defined, the co-
efficients of the tensorial basis functions, f ′is, are the un-
knowns in the above model. In a given voxel, fibers oriented
in all possible directions cannot be present at the same time.
When fibers in some orientations are not present in a voxel,
the coefficients of the corresponding basis functions would be
zero. Thus, one can see that the f ’s will be sparse in a given
voxel.

3.3. Joint Reconstruction of f from k-q undersampled
data

The N unknowns in each voxel can be jointly reconstructed
from the under-sampled k-q data using compressed sensing.
For the applied gradient directions gk and the applied b-value,
(3) results in a set of K linear equations (K < N) which
can be written in matrix formulation as follows: Define yk =
F{Sk/S0}, where F is the Fourier Transform. yk is the
measured undersampled data corresponding to direction gk.
Then (3) can be re-written as y = Âf + ε where A =ψ1(b,g1) · · · ψN (b,g1)

...
...

...
ψ1(b,gK) · · · ψN (b,gK)

 and Âf = F ◦A(f)

Since the k-space data was collected on a non-Cartesian
grid, the Fourier transformF represents encodings to the non-
Cartesian k-space locations. The unknown vector f can now
be solved as a non-linear optimization problem as posed in
(4) that enforce sparsity of f by minimizing the L1 norm of
f . Additional regularization using as total variation is also
imposed to constrain the solution.

f̂ = argmin
f
||Af − y||2l2 + λ1||f ||lTV

+ λ2||f ||l1

where ||f ||lTV
= ||∇f ||l1 and ||f ||l1 =

∑
i

|fi|
(4)

We Minimize of the above cost function using a CG algo-
rithm. The `1 minimization was implemented as an iterative
re-weighted `2 norm minimization. Once f is solved, the dif-
fusion images can be reconstructed using the forward model
in (3). The diffusion ODF can also be computed for the above
model using the analytical expression [9]:

Φ(b,uk) =

N∑
i=1

fi
Z

√
πb

uk
TD−1i uk

(5)

4. RESULTS

A numerical phantom simulating a 90-degree crossing fiber
and an in-vivo data were used to test the algorithm. In-

vivo human data at high angular and spatial resolution was
collected and retrospectively down-sampled. Images of a
healthy adult volunteer were obtained on a 3T GE MR750
scanner (GE Healthcare, Waukesha, MI) equipped with
an 8-channel head coil, after approval by Duke University
Health System Institutional Review Board. Scanning param-
eters: variable density spiral sequence: FOV 19.2cm, matrix
192x192, 1x1mm2 resolution, 10 slices, slice thickness/gap
= 1.5mm/2.0mm, b=1200 s/mm2, 5 b=0 and 60 diffusion-
weighted images, 22 interleaves, TE/TR=40/2000ms, total
scan time was 48 mins.

We accommodate the data from multiple channels using
SENSE scheme. To test the performance of the reconstruc-
tion, we performed experiments at various under-sampling
levels . In addition to the joint k-q downsampling, a uniform
q-only downsampling as in [4, 5] was also performed retro-
spectively for comparisons.

For the in-vivo data, a reference ODF was reconstructed
from the fully sampled data with all 60 directions and 22 in-
terleaves. We achieved the combined k-q down-sampling as
follows: for an acceleration factor of n, 22/n random inter-
leaves were chosen for each diffusion direction such that the
selected interleaves differ for each diffusion direction. Ac-
celeration rates corresponding to n=2,4,6 (corresponding to
11, 5, 3 interleaves) were tested. The same acceleration rates
corresponding to n=2,4,6 (corresponding to 30, 15 and 10
diffusion directions) were tested for q-only down-sampling
scheme also. The ODFs from both under-sampling schemes
were reconstructed and compared to the reference ODF. A
Normalized sum-of-squares error (NSSE) was computed for
the reconstructed ODFs in each case as follows:

NSSE =

∑
x,y,z,K (||ODFRef −ODFRec||2)∑

x,y,z,K ||ODFRef ||2
(6)

A plot of the error in the reconstructed ODF from the two
under-sampling schemes at various levels of acceleration
are shown in Fig 2(d) and Fig 3(d). The error in the k-q
down-sampling scheme is much lower than that of the q
down-sampling scheme for all acceleration factors. The re-
sults shows that to achieve the same acceleration rate, the
combined k-q down-sampling scheme performed better than
q-only down-sampling. From the reconstructed ODFs of the
two schemes (Figures 2 a-c,3 a-c), it can be seen that the ODF
peaks becomes less pronounced as the q down-sampling rate
is increased, whereas the peaks are still preserved accurately
in the k-q down-sampling schemes for the same accelera-
tion rates. Results show that even at 6-fold acceleration of
the k-q down-sampling scheme, the diffusion ODF can be
reconstructed reasonably accurately.

5. CONCLUSION

In spite of the obvious benefits of combining high angular
and spatial resolution, prohibitively long acquisition times



(a) (b) (c) (d)

Fig. 2. Numerical phantom results: (a) Reference ODF reconstructed using 47 angular measurements. (b),(c) ODF recon-
structed at acceleration of 4 using q-only and k-q down-sampling respectively. (d) Plot of Normalized reconstructed error for
ODF for the two schemes at various accelerations .

(a) (b) (c) (d)

Fig. 3. Real data results: (a) Reference ODF reconstructed from a region with 3 fiber crossings. (b),(c) ODF reconstructed at
acceleration of 4 using q-only and k-q down-sampling respectively (d) Plot of Normalized reconstructed error for ODF for the
two schemes at various accelerations.

have made such goals impractical with conventional dif-
fusion imaging schemes. We proposed a method that can
achieve both high spatial and angular resolution simulta-
neously within a reasonable scan-time. We have shown
that the combined k-q acquisition space of diffusion can be
substantially down-sampled and diffusion ODFs accurately
reconstructed using compressed sensing. A sparse model was
formulated and a novel acquistion strategy was introduced
that can down-sample the combined k-q space. Results on
numerical phantom and real data shows that to achieve the
same factor of acceleration, combined k-q down-sampling
scheme is better than uniform q-only down-sampling to pre-
serve the directional accuracy of crossing fibers. Our results
show that the acquisition time can be reduced by at least
6-fold by appropriately under-sampling the combined k-q
acquisition space.
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