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Abstract. We introduce a new algorithm for the reconstruction of
functional brain activations from near-infrared spectroscopic imaging
�NIRSI� data. While NIRSI offers remarkable biochemical specificity,
the attainable spatial resolution with this technique is rather limited,
mainly due to the highly scattering nature of brain tissue and the low
number of measurement channels. Our approach exploits the
support-limited �spatially concentrated� nature of the activations to
make the reconstruction problem well-posed. The new algorithm con-
siders both the support and the function values of the activations as
unknowns and estimates them from the data. The support of the acti-
vations is represented using a level-set scheme. We use a two-step
alternating iterative scheme to solve for the activations. Since our ap-
proach uses the inherent nature of functional activations to make the
problem well-posed, it provides reconstructions with better spatial
resolution, fewer artifacts, and is more robust to noise than existing
techniques. Numerical simulations and experimental data indicate a
significant improvement in the quality �resolution and robustness to
noise� over standard techniques such as truncated conjugate gradients
�TCG� and simultaneous iterative reconstruction technique �SIRT� al-
gorithms. Furthermore, results on experimental data obtained from
simultaneous functional magnetic resonance imaging �fMRI� and op-
tical measurements show much closer agreement of the optical recon-
struction using the new approach with fMRI images than TCG and
SIRT. © 2006 Society of Photo-Optical Instrumentation Engineers.
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1 Introduction

Near-infrared spectroscopic imaging �NIRSI� is an emerging
technique, based on the propagation of light through tissue:1–3

Owing to its sensitivity to oxy- and deoxyhemoglobin concen-
trations and high temporal resolution, this approach offers
considerable promise in functional brain studies.4–7 Moreover,
its ability to measure the changes in the optical scattering
properties of activated neurons makes it even more attractive.8

However, the main drawback of this technique is the poor
spatial resolution, mainly due to the diffuse nature of light
propagation, the low number of source detector pairs, and the
limited penetration of light into the brain �due to the highly
scattering nature of tissue�.9

A popular forward model in NIRSI is the diffusion equa-
tion, derived as an approximation to the radiative transfer
equation �RTE�. Because this problem is nonlinear with re-
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spect to the unknown parameters �absorption and scattering
coefficients�, nonlinear reconstruction schemes including it-
erative perturbation methods2,10,11 and back-propagation
techniques12,13 have been proposed to solve this problem.
These approaches make few assumptions about the forward
problem and the medium. However, they are computationally
expensive and require sophisticated techniques to ensure con-
vergence. Our focus is on functional imaging, where the ob-
jective is to measure the perturbations in the absorption coef-
ficient of the brain tissue as a function of the stimulus.5,7 The
general approach in this setup is to linearize the forward prob-
lem using the Born or Rytov approximation, assuming the
perturbation in the absorption coefficient to be small. This
approximation reduces the problem to the well-studied class
of linear inverse problems.14 Classical techniques such as al-
gebraic methods,15,16 Tikhonov regularized reconstructions,17

and subspace methods15 are the currently used schemes. Re-
cently, several authors have reported approaches to constrain
the reconstructions using priors from alternate modalities such
1083-3668/2006/11�6�/064029/12/$22.00 © 2006 SPIE
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as functional magnetic resonance imaging �fMRI� and struc-
tural MR scans.16,18–21

The main focus of this paper is to improve the spatial
resolution of the reconstructions by using a better reconstruc-
tion algorithm. Our approach is based on the assumption that
the activations are spatially concentrated or sparse; in other
words, only a subregion of the brain is activated at any in-
stant. With this assumption, the reconstruction can be posed
as a sparse inverse problem.22–24 Theoretical results indicate
that if a signal is sparse, it can still be recovered from an
underdetermined system of equations, provided the number of
unknowns is lower than the number of independent measure-
ments. Because the number of independent measurements in
NIRSI is often much smaller than the number of activated
voxels, we propose to enforce additional constraints such as
the activation pattern being smooth over the region �see Fig. 1
for an illustration� to further reduce the degrees of freedom. In
traditional approaches, such as subspace methods or truncated
conjugate gradients �TCG� algorithm, the reconstruction is
regularized by restricting the solution to a low-dimensional
eigenspace of the system matrix. This space, in general, need
not represent the class of natural images and hence may result
in artifacts as shown later. In contrast, the new method intro-
duces penalties for deviation of the estimate from the ex-
pected natural image characteristics to obtain well-posed
reconstructions.

The standard l1 minimization approach to sparse
problems23,24 does not offer a convenient way to account for
the additional properties of brain activations. Instead, we pro-
pose a new algorithm based on variational principles that is an
extension of Ref. 25. We consider �a� the support of the acti-
vated regions �regions where the activations are nonzero� and
�b� the value of the activations over this support as unknowns
and solve for them using an iterative alternating two-step
minimization of a cost function. In the first step, we assume
an initial support from the previous iteration and solve for the
activations over this region using the CG optimization algo-

Fig. 1 The setup of the reconstruction algorithm illustrated in two
dimensions. Ω denotes the region of activation �where the function f
is assumed to be nonzero�. dΩ is the boundary of Ω. D denotes the
mask corresponding to the brain �it can also be defined as a subregion
of the brain where the light bundles have significant amplitude�. �i,j�x�
is the light bundle between the ith source and the jth detector. With
this assumption of f being zero in D\Ω, the forward model can be
formulated as Eq. �9�.
rithm. This step is similar in concept to Ref. 18, where the

Journal of Biomedical Optics 064029-
support is obtained from prior knowledge. In the next step, we
evolve the support so as to minimize the cost function. This
approach is similar in principle to Refs. 26–28. We represent
the support using the level-set formalism;29 the evolution of
the support can be posed as a simple partial differential equa-
tion, thanks to the well-developed level-set theory.29,30 The
two-step algorithm is iterated until convergence.

We used a Monte Carlo method to simulate light transport
in a realistic head model and thus determine the light bundles
and the perturbed optical signal. We perform quantitative and
qualitative comparison of the proposed algorithm to the stan-
dard approaches, such as simultaneous iterative reconstruction
technique �SIRT� and TCG. We also studied the performance
of the algorithm to experimental data obtained from simulta-
neous fMRI and optical measurements.

2 Methods
In this section, we formulate the forward problem, discuss
the simulation setup, and propose the new reconstruction
algorithm.

2.1 Formulation of the Forward Problem
In this paper, we assume frequency-resolved measurements;
the light sources are amplitude modulated by a sinusoid of a
specified frequency �. Although we focus on this setup, the
proposed algorithm is general enough to accommodate time-
resolved and continuous-wave measurements �with an appro-
priate change in forward model�. The widely used forward
model for the photon fluence in a highly scattering medium is
the Helmholtz frequency-domain diffusion equation4,15,31

��2 +
j� − c�a�x�

D
���x� = −

c

D
q�x� . �1�

Here �=2��, ��x� is the photon fluence at the specified
location x; �a�x� is the absorbtion coefficient; c is the veloc-
ity of light in the medium; and D=c /3�s� is the diffusion
coefficient. �s� is the reduced scattering coefficient and q�x� is
the light source. This equation is obtained by approximating
the general RTE, assuming that �s is not spatially varying
�i.e., ���s � →0�.

Functional activations give rise to small perturbations in
�a�x� due to changes in local oxy- and deoxyhemoglobin
concentrations. Denoting the perturbations in the absorption
coefficient and the corresponding perturbation in the fluence
as ��a�x� and ���x�, respectively, and by assuming
��� � � ���, we obtain

��2 +
j� − c�a�x�

D
����x� = −

c

D
��a�x���x� . �2�

Note that the above differential equation is linear in ��; it
can be solved in terms of the corresponding Green’s function
G�x ,x�� as

�3�
Hence, the perturbation in the fluence at a specified detector
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location x j, corresponding to a source located at xi �specified
by the corresponding baseline fluence distribution �i�x��, is
given by

���i, j���i�x j� =�
R3

�l,m�x���a�x�dx , �4�

where the three-dimensional sensitivity function �i,j�x�
=−c /D�G�x ,x j��i�x� is termed as the light bundle between
the ith source and jth detector. Note that the above equation
indicates a linear relationship between the perturbation in the
absorption coefficient and that of the optical signal.

2.2 Noise Process
It is experimentally observed that the noise at the jth detector
due to the ith source �defined by 	�i , j�� follows a Gaussian
process with zero mean and standard deviation proportional to
the amplitude of the corresponding baseline signal �i,j. �We
assume source-detector distances of about 25 to 30 mm, in-
cluding the biological noise contribution.� Collecting the mea-
surements corresponding to the different source-detector pairs
into a single vector, and denoting f�x�=��a�x�, we obtain

y =�
R3

��x�f�x�dx + 	 . �5�

Here

y = �y�0,0�,y�0,1� . . . y�M − 1,N − 1��T, �6�

��x� = ��0,0�x�,�0,1�x� . . . �M−1,N−1�x��T. �7�

2.3 Simulation of the Forward Problem
We use Monte Carlo simulations of the optical transport prob-
lem, discussed in Refs. 16 and 32, to generate the frequency-
domain light bundles. The modulation frequency � is chosen
as 200 MHz. To generate realistic simulations, we use the
segmentation of a magnetization-prepared rapid acquisition
gradient echo �MP-RAGE� MRI brain scan along with scat-
tering and absorbtion coefficients from Ref. 32 to obtain the
light bundles. We insert a small bloblike perturbation �see Fig.
3� on the cortical region �10% of the nonstimulated absorption
coefficient� and obtain the corresponding perturbed fluence
measurements. We refer to the bloblike perturbation in the
absorption coefficient as forig and the corresponding optical
perturbation as yorig.

Based on previous experimental results, we set the stan-
dard deviation of the noise process to be 2% of the baseline
signal. Because the perturbation in the optical signal due to
functional activation is often much smaller in amplitude as
compared to the baseline, this corresponds to a very noisy
scenario �the signal to noise ratio �SNR� of the perturbation
signal is approximately −15 dB�. At such a high noise level, it
is difficult to obtain reasonable reconstructions. Hence, it is
common practice to average N successive measurements to
improve the SNR. With N averages, the standard deviation of
the noise process will decrease by a factor of 	N. In our
experimental setup,16,33 we time-domain multiplex the signals

from individual channels and hence the time resolution is
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20 ms per channel: we typically use around 50 to 100 aver-
ages; the resulting temporal resolution is still sufficient for
hemodynamic studies.

We assumed the source-detector configuration in Ref. 16
for the simulations �see Fig. 2�. We denote the noise corrupted
version of yorig as ymeasured. We then use the reconstruction

algorithms to obtain the estimate of the signal �denoted by f̂�
from ymeasured.

2.4 Reconstruction
By collecting the voxel values of f�x� into a vector f, the
forward model ��9�� can be expressed as a matrix equation
y=Af+�. Each voxel in the reconstructed image would cor-
respond to a column of A. Similarly, a measurement corre-
sponds to a row in A. In the context of sparse sampling, it is
shown that if the submatrix of A, obtained by selecting any of
its M columns is invertible, an activation pattern with M ac-
tive voxels can be uniquely reconstructed with probability 1.34

Unfortunately, the value of M, for which the condition num-
ber of all M column submatrices of A is reasonably low
�well-conditioned matrix is required to ensure robust recon-
structions in the presence of noise�, is fairly small for the
NIRSI forward model �M 
16�. Hence, we have to enforce
additional constraints that are relevant to the functional imag-
ing context �e.g., the activation pattern being smooth in the
region of support, the boundary of the activations being
smooth� to further reduce the degrees of freedom. We would
now be searching for an activation pattern in the class of
reconstructions that satisfy these constraints; we hypothesize
that these constraints ensure a reasonably well-conditioned
inversion problem.

The standard l1 minimization approach to sparse
23,24

Fig. 2 Schematic of the optical probe: 16 sources arranged in a circu-
lar pattern and 4 detectors in the center used to obtain 64 source-
detector pairs.
problems does not offer a convenient way to account for
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the additional properties of brain activations. Instead, we pro-
pose an alternate algorithm using variational principles. As-
suming the activations to be support limited to subregions of
the brain specified by ��D �see Fig. 1�, we rewrite the for-
ward model as

y =�
�

��x�f�x�dx + � . �8�

The above expression can also be represented as

y = ��f + � , �9�

where �� denotes the linear integral operator describing the
measurement process. In practical implementations, the func-
tion values of f are vectorized. In this case, the operator ��

simplifies to a matrix.
Note that f and its support � in �9� are unknowns. We pose

the estimation of these quantities as a numerical optimization
problem; we define the cost function as

�10�

The first term in Eq. �10� is a measure of the data consistency.
� . . . �w denotes the weighted l2 norm

�y�w
2 = 


i

wi
2�y�i��2. �11�

We choose the weight vector w=1/	���, where � is the vec-
tor corresponding to the baseline signal. This is to account for
the statistics of the noise. �The measurement with the largest
noise variance gets the lowest weight, thus whitening the
noise process.� The weighted norm can be converted to a
simple l2 norm by assuming the measurements as y�=Wy,
and ��� =W��, where W=diag�wi�; W is a diagonal matrix
with the diagonal entries specified by the vector w. In the rest
of this paper, we assume these modified quantities. However,
for simplicity of notation, we will denote y� and ��� by y and
��, respectively.

The second and third terms in Eq. �10� are similar to the
standard Tikhonov regularization terms used in inverse prob-
lems to make the inverse problem well-posed.14 The impor-
tant difference with the standard setting is that these integrals
are evaluated over � as compared to R3 �the entire volume� in
the standard scheme. This restriction ensures that we would
not be smoothing across the boundaries between the activated
and the nonactivated regions, thus avoiding the blurring of the
edges of the activation regions. The second term penalizes the
amplitude of the reconstructions, thus eliminating reconstruc-
tions with high amplitudes. The third term imposes a penalty
on the roughness of f on its support. If �→, �f would only
be supported on d�, the boundary of �; we would be recon-

structing a piecewise-constant function f . The last term in Eq.
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�10� constrains the volume of the activations; it ensures that
the estimation of the support � is well-posed. The parameters
�, �, and � control the strength of the additional penalties
relative to the data consistency term. Note that in the absence
of the second and third terms, the cost function is simply an l0
minimization problem; one tries to find an f with the smallest
possible support.

This approach of simultaneously estimating � and the
function values is an extension of Ref. 25 to three dimensions.
This approach is also conceptually similar to Refs. 26 and
35–38. A similar shape-based approach was used in the con-
text of diffuse optical imaging in Ref. 39. They modeled the
shape of the activation as an ellipsoid while the function val-
ues inside and outside the activation are approximated by har-
monics. Our approach is more general because it can account
for perturbations of arbitrary shape and topology. Moreover,
we model the function values as arbitrary smooth functions.

The main difference between the new method and the one
in Ref. 25 is the inclusion of additional Tikhonov regulariza-
tion terms. In addition, the last term in Eq. �10� is also differ-
ent from Ref. 25; we minimize the volume of � rather than
the surface area of the boundary d�. The main reason to
change this term is to improve the numerical stability of the
algorithm. The functional activations typically occupy a very
small region of space ��10 to 15 voxels�. Hence, the approxi-
mation of the curvature term using simple finite difference
operators is not good enough for this application. Further-
more, the new term minimizes the volume of the support that
is desirable to ensure sparse reconstructions.

2.5 Algorithm

In Sec. 2.4, we have seen that the reconstruction of the acti-
vation pattern involves the minimization of Eq. �10�

f* = arg min
f ,�

C�f ,�� . �12�

We use a two-step alternating minimization algorithm for this
purpose.

2.5.1 Optimization scheme

In the first step, we estimate the optimal f , assuming � to be
known. In the next step, we update �, assuming the value of
f from the previous iteration. These steps are elaborated
below.

1. Derivation of optimal f given �: The derivation of op-
timal f given � can be formulated as

f* = arg min
f

��y − ��f�2 + ��
�

�f �2dx + ��
�

��f �2dx� .

�13�

Note that we omitted the last term in Eq. �10� because it is
independent of f . We show in Appendix A that the solution to
the above problem satisfies the following equations:

H 2 H
������f + �f − �� f = ��y, on � , �14�
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�f · N = 0, on d� , �15�

where N denotes the unit normal of the surface d� and v1 ·v2
denotes the inner product between two vectors v1 and v2. The
operator ��

H denotes the adjoint of ��.
In our implementation, we discretize Eqs. �14� and �15� on

a regular Cartesian grid. We discretize the Laplacian operator
�2 using the second-order finite difference operator. Because
the first-order finite differences of the boundary value voxels
in the direction of the normal �difference between voxels in �
and outside� are 0 due to Eq. �15�, we omit these terms from
the discretization. Using the value of � evaluated on the grid
�the light bundles are also derived by Monte Carlo simula-
tions�, we rewrite �� also in a matrix form. This reduces the
above equations to an Ax=b form in the matrix representa-
tion. We use the CG algorithm to solve for the optimal f
efficiently. In practice, the CG algorithm converges to the
actual solution within few iterations.

2. Updating � assuming f: In the second step, we update
the current estimate of �, assuming the value of f to be
known. The standard procedure is to evolve the boundary d�
with a specified velocity v�x�. The velocity is chosen such
that the cost function �10� is minimized; We show in Appen-
dix B that the optimal velocity is given by

vopt�x� = − Re�2f*��
* ���f − y� + ��f �2 + ���f �2 + ��N ,

�16�

where N denotes the unit outward normal of the surface d�.
Note that this step is equivalent to minimizing C with respect
to � using a steepest descent algorithm. This procedure is
explained in more detail in Sec. 2.5.2.

The inner CG iterations to estimate f �step 1� and the sup-
port update �step 2� are terminated when the ratio of the de-
crease in the criterion �10� to the value of the criterion falls
below a chosen threshold.

2.5.2 Boundary evolution using the level-set method

The boundaries can be represented and evolved using
explicit40,41 or implicit formulations such as the level-set
algorithm.29,30 In this work, we use the level-set scheme due
to its ease in dealing with volumes of arbitrary topology. This
approach was pioneered by Osher and Sethian.29 In this ap-
proach, the evolving �during optimization� boundary d�, at a
specified time instance t �denoted by d�t�, is represented as
the zero level set of a three-dimensional function �t�x� :R3

→R
Journal of Biomedical Optics 064029-
d�t = �x � R3��t�x� = 0� �17�

and the support of f is given by

�t = �x � R3��t�x� � 0� . �18�

In the level-set framework, the deformation of the region from
�t to �t+1, caused by evolving the boundary with a velocity
v�x�, is obtained by solving the partial differential equation

��t

�t
= v���t� . �19�

If the boundary flow �i.e., the evolution of boundary � with a
specified velocity v as in Eq. �19�� is extended over the entire
domain, the evolution of the domain � can be handled easily
by solving Eq. �19� on a regular Cartesian grid.

The algorithm starts with an initial �. Initializing the al-
gorithm far from the real boundaries will require many itera-
tions to converge. Moreover, this also increases the chance of
the algorithm being trapped in local minima. If prior knowl-
edge is available, as in Ref. 18, the algorithm could be initial-
ized using this information. Because our technique refines this
initialization using boundary evolution, precise correspon-
dence of prior knowledge is not required.

Another approach is to use a few iterations of the CG
algorithm to obtain a coarse initial guess. In this work, we use
this scheme to start the iteration. We define the initial poten-
tial function as

�0�x� = �u�x�� − T , �20�

where u�x� is the reconstruction given by the CG algorithm
after a few iterations. T is an appropriately chosen threshold
such that a reasonably sized region is chosen as �0. From
numerical experiments, we find that the reconstruction is es-
sentially independent of the choice of T, except for changes in
the number of iterations and consequently the computation
time. A major difference between our approach and the other
level-set schemes is that we do not constrain the potential
function to be a distance function.

Note that the expression for the velocity �16� is valid only
at the current boundary d�. One approach is to use a narrow-
band scheme to update the level set in the proximity of d�.29

This approach, though computationally efficient when care-
fully programmed, could introduce instabilities in the evolu-
tion. Hence, we would have to reinitialize the potential func-
tion after a few iterations. Another option is to extend the
velocity so that the potential function is well-behaved. Many
possible velocity extensions exist in the literature.25,42,43 We
use the scheme proposed in Ref. 25, because it encourages the
formation of regions away from the current boundary.
v�x� = − Re�2f*��
H���f − y� + ��f �2 + ���f �2 + �� , on � � d� ,

− Re�f��2w*��D\��H���f − y�� , on D \ �� � d�� .
�21�
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Fig. 3 Reconstruction in the absence of noise. The range of the origi-
nal signal is scaled to be in the range 0 to 100; the same scale factor
is applied to the reconstructions. The voxel dimensions in the above
figure are 4 mm3. The reconstructions are constrained to the brain
�gray matter and white matter� and are displayed over the mask of the
brain �gray matter and white matter�. The nonbrain regions are
marked as “nb” in the color bar. The top row consists of three slices of
the original and level-set reconstructions each. Note that the level-set
reconstructions are in close agreement with the original object. The
corresponding slices of the reconstructions with SIRT and CG are dis-
played on the bottom row. Note that these reconstructions are distrib-
uted over a larger region and are oscillatory. The white arrows corre-
spond to regions with negative amplitude. This effect is predominantly
visible in the CG reconstructions. We used 64 iterations of CG and
400 iterations of SIRT. For the new algorithm, we used �=2e−3, �

Fig. 4 Reconstruction in the presence of noise. The range of the origi-
nal signal is scaled to be in the range 0 to 100; the same scale factor
is applied to the reconstructions as well. The voxel dimensions in the
above figure are 4 mm3. We considered a noise process of standard
deviation that is 2% of the baseline signal. We considered 50 averages
of this signal and reconstructed the signal. Note that the SIRT and TCG
give very smooth reconstructions. Also note that their amplitudes
�from the color bar� are not in good agreement with the original. On
the other hand, the level-set algorithm gave reasonable reconstruc-
tions indicating its improved resolving capability. Here we used �
=2e−3, �=0.3, �=0.8. Note that the optimal parameter set depends
on the noise level and hence is different from the noise-free case
considered in Fig. 3.
The function w�x� in Eq. �21� is chosen as

w�x� = ��x� � �u�x�� . �22�

Here, ��x� is the current potential function and ��u�x�� is the
angle of the reconstruction �initial guess� obtained from CG.

3 Results and Observations

In this section, we validate the new approach and compare it
with the standard reconstruction schemes: �a� SIRT and �b�
TCG method. Because the original underlying perturbation is
difficult to obtain from a real scan, we validate the algorith-
mon simulated data in Sec. 3.1. We then perform simulta-
neous optical and fMRI measurements and compare the re-
constructions to the corresponding fMRI results in Sec. 3.2.

3.1 Validation Using Simulated Data
The Monte Carlo setup to simulate the image formation is
discussed in Sec. 2.3. The baseline measurements are com-
puted using Monte Carlo simulations on the head model, de-
rived from segmentations of a MPRAGE head scan. Similarly,
the perturbed measurements are then obtained by running the
scheme on the head model with the specified perturbation in

the absorption coefficients. The perturbations are shown in

Journal of Biomedical Optics 064029-
Figs. 3�a�–3�c� and Figs. 4�a�–4�c�, respectively. A noise pro-
cess of standard deviation proportional to the magnitude of
the baseline signal is then added to the perturbed signal. The
difference between the perturbed measurements and the base-
line signal would correspond to the perturbed optical signal.
We then perform the reconstructions using the three
algorithms and the results are compared to the original
perturbations.

The optimal parameters �number of iterations in TCG and
SIRT and the variables �, �, and � in the new algorithm� are
determined by comparing the reconstructions to the original,
for a typical perturbation. This perturbation is different from
the ones considered in the subsequent experiments, which are
reported in this paper. This optimal parameter set, so derived,
was then used for all experiments at this noise level. Since the
parameters depend on the noise level, the optimal parameter
set has to be determined for each noise level. Because this set
is a function of the noise levels, the experiment had to be
repeated for different noise levels �or number of averages�.

The algorithm is implemented in MATLAB, with a C imple-
mentation of the support update. The decay of the criterion in
Eq. �10� as a function of the number of CG iterations in the
cases of single-blob and two-blob perturbations �Figs. 3 and
4� are shown in Fig. 5. It is seen that the criterion decreases
=0.2, �=0.6.
rapidly after every support update. The level-set algorithm on
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the average took �1 min to converge in comparison to �10 s
for the TCG on a Pentium 4, 3.2 GHz computer.

3.1.1 Qualitative comparisons
In this section, we perform qualitative comparisons of the
three algorithms: SIRT, TCG, and level set. First, we compare
them in the absence of noise. A few slices of the original and
the reconstructed activations are overlaid on the mask of the
brain �gray-matter and white-matter regions� in Fig. 3. Note
that the SIRT and CG reconstructions are distributed over a
much larger region of the mask. There are also some regions
on these estimates where the reconstructions are oscillatory
�the white arrows in the figure show regions of negative am-
plitudes�. The noisy-looking reconstructions of the CG could
be due to the oscillatory nature of the singular vectors of the
system matrix A. These oscillatory reconstructions were also
reported in Ref. 16. On the other hand, the new approach
gives reconstructions that are similar to the original signal.

To understand the flexibility and limitations of the algo-
rithm, we study the performance of the algorithm for two
different activations in Fig. 6. In the first case, we consider
two blobs with different amplitudes. It is seen that the level-
set algorithm provides a reasonably good recovery of the am-
plitudes and the shape of the reconstructions. We then consid-
ered a single activation that is deeper in the brain. In this case,
the reconstructions are biased to the cortical surface as ex-
pected. This is due to the exponential drop in sensitivity of the
optical technique with depth. With standard reconstruction
schemes, this bias is predominant and often leads to artifacts
as seen in Fig. 9.

In Fig. 4, we study the case where there are two activated
regions in the presence of noise. Note that the SIRT and TCG
algorithms give a uniformly smooth reconstruction; these al-
gorithms are not capable of resolving the two activations. On

Fig. 5 Decay of the criterion �10� as a function of the number of CG i
the support of the activations are changed. Each support update will
added voxels are initialized by zeros to start the CG iteration. This resu
of the third term in Eq. �10�� after some of the support updates �at the
decays to a value smaller than the one before the support update in a
the relative decrease in the criterion falls below a specified threshold
the other hand, the new algorithm results in two distinct acti-
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vations, although the shapes are distorted. This clearly indi-
cates that the new approach can resolve adjacent structures
better.

3.1.2 Quantitative comparisons

In this section, we compare the different algorithms by com-
paring the estimates with the original signal forig. Here, we
considered the case with only one activation. We use different
metrics for comparison:

1. Mean squared error �MSE�: The normalized mean
squared error in estimation is given by

MSE =

�
R3

�forig�x� − fest�x��2dx

�
R3

�forig�x��2dx

. �23�

While this error term is widely used and is simple, its value
can be misleading in our setting. The level-set algorithm pro-
duces piecewise smooth reconstructions as compared to
smooth reconstructions with SIRT and CG. Because the opti-
cal light bundles are smooth and few in number, it is not
possible to precisely localize the functional activations. The
MSE would indicate larger errors for the level-set method,
even when the piecewise smooth reconstructions are only
slightly off. On the other hand, this metric gives small values
while comparing smooth functions, even when the locations
are wrong.

2. Support error �SE�: We use the standard MATLAB �Math-
works, Natick, New Jersey� implementation of the k-means
algorithm to classify the reconstructions into two regions �ac-
tivated and background�. Examples of the segmentations of

ns. The dotted lines mark the locations of the level-set update, where
delete new voxels to the current estimate of the support. The newly
slight increase in the value of the criterion �mainly due to a high value
where new voxels are added�. Note that in these steps, the criterion
rations. Both the CG and the level-set iterations are terminated when
teratio
add or
lts in a

steps
few ite
CG and SIRT reconstructions are shown in Fig. 7. We then
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compare the support of the estimated activations to the origi-
nal support using the metric

SE =

�
R3

���orig
�x� − ��est

�x��2dx

�
R3

���orig
�x��2dx

, �24�

where the characteristic function of a region � is defined as

���x� = 1, if x � � ,

0, otherwise.
�25�

Note that the above metric counts the misclassified voxels in
the reconstruction and hence ignores any amplitude changes.
This metric can be argued to make better sense for the com-
parison of reconstructions of functional activations.

3. Support centroid error �SCE�: We choose the distance
between the centroids of the original activation and that of the
detected activation as the error measure. This approach uses
the classification from the earlier metric.

Using these error measures, we quantitatively compare the
performance of the algorithms �level-set, CG, and SIRT� as a
function of the number of averages for the single activation
case �Fig. 3�. Note that the SNR is proportional to the square
root of the number of averages. The results are displayed in
Fig. 8. Note that the new algorithm fares better under both SE
and SCE, in clear agreement to the visual comparisons. How-
ever, the MSE indicates a higher error in comparison to the
others. As we have explained before, this is due to the inher-
ent weakness of MSE to compare piecewise constant func-
tions. Note that the errors of any of the algorithms does not
decay to zero even when there is no noise, indicating the
insufficiency of the data �ill-posed nature of the problem�.

3.2 Experimental Results
We now study the performance of the algorithm to experimen-

Fig. 6 Reconstruction for various test activation patterns. Two adjacent
two blobs that have different amplitudes on the left. It is seen that the l
activations. On the right, we test the reconstructions for a deeper activ
the cortex. Also note that the amplitude of the reconstructions are
exponentially with depth. Here, we used the same noise level and sa
tal data. The optical probe was designed with 16 pairs of
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400-mm-diameter core plastic-clad multimode silica source
fibers and 4 detector fiber bundles. The topology of the probe
is shown in Fig. 1. A MRI visible marker is attached adjacent
to each of the 16 optical source fibers and 4 detector fiber
bundles so that accurate source and detector positions could
be estimated from MR images. Experimental fMRI and
NIRSI data were obtained from a normal subject, who was
scanned using a Siemens Allegra 3T system. The study was
approved by the University of Illinois at Urbana-Champaign
Institutional Review Board. Written informed consent was ob-
tained from the volunteer before the study began.

The optical signals were recorded using a near-infrared
spectrometer �Imagent, ISS, Champaign, Illinois�. Data acqui-
sition was synchronized with the fMRI measurements using
the transistor-transistor logic �TTL�-trigger signal from the
MR scanner, which also triggered the beginning of the visual
stimulation paradigm. The optical sources were laser diodes
�690 and 830 nm� that are amplitude modulated at 150 MHz
and time-multiplexed. Light reaching the detectors was ampli-
fied by photomultiplier tubes and converted into ac, dc, and
phase signals for each of the source-detector combinations, or
channels, at each wavelength.

A pair of nonmagnetic goggles �Resonance Technology,
Inc., North Ridge, California� with liquid crystal display
screens were placed in front of the subjects’ eyes inside the
birdcage head coil. The visual stimulation paradigm consisted
of five blocks each with 28.8-s fixation followed by 19.2 s of
a black-and-white checkerboard pattern flashing on for 50 ms
and off for 1.95 s.

Automatic estimation of source and detector positions
from the MR images, incorporating deformation of the optical
probe, is performed using custom-developed image process-
ing algorithms written in MATLAB. The optical data is aver-
aged over 80 activation-relaxation trials to produce the esti-
mate of the signal difference between the active and baseline
conditions.16 The level-set reconstructions of the perturbation
in absorption coefficients are performed at the two wave-
lengths. The perturbation in the oxy- and the deoxyhemoglo-

of each data set are displayed. We consider an activation pattern with
t reconstruction scheme give a reasonably good reconstruction of the
It is seen that the level-set reconstructions are biased to the surface of
lower than the original value. This is because light bundles decay
ameters as in Fig. 4.
slices
evel-se
ation.
much
me par
bin concentrations are estimated using the Lambert-Beer law.
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The estimated perturbation maps, overlaid on the brain sur-
face, are shown in Fig. 9. One would expect a systematic
increase and decrease in the oxy- and deoxyhemoglobin con-
centrations, respectively, at the locations corresponding to the
fMRI activations. It is seen from the reconstructions that this
is roughly the trend in the NIRSI reconstructions. However,
unlike the fMRI image, both CG and SIRT reconstructions
indicate activations in a shallow region of the brain without
separation between left and right sides of the visual cortex.
On the contrary, the level-set images show two separate acti-
vated regions on the left and right sides of the brain, which
are deeper and similar to the fMRI images. All optical images
show stronger activation in the left hemisphere because in this
location the activation region �as revealed by fMRI� is slightly
closer to the surface of the head.

4 Conclusions
We have proposed a new reconstruction algorithm to estimate
the functional activations for diffuse optical imaging of func-
tional activations in the human brain. Our approch relies on
penalty terms that agree with the physiological properties of
the activated regions in the brain to make the problem well-
posed. Hence, it produced reconstructions with better spatial
resolution and fewer artifacts, as compared to the existing
techniques. The main downside of the algorithm is the com-
putational complexity; the new approach is about 5 to 10
times more expensive than the standard algorithms. However,
as computers are getting more powerful, this issue becomes
less of a concern. We compared the algorithm with two stan-
dard reconstruction techniques: SIRT and TCG on both simu-
lated and experimental data; the results clearly demonstrate
the improvement in resolution and robustness over the exist-
ing algorithms.
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Appendix A—Derivation of the Optimal
f Given Ω
To derive the optimal f , we need to solve the problem

�26�

Perturbing f to f +�, the corresponding perturbation in the
cost function is

�C = C�f + �� − C�f� � 2����,�y − ��f��

+ 2��
�

f�x���x�dx + 2��
�

��f�x� · ���x��dx .

�27�

Using Green’s first identity, we rewrite the last term as

�
�

��f�x� · ���x��dx = −�
�

��x��2f�x�dx

+�
��

��x���f�x� · dN� , �28�

where N is the unit outward normal of the surface d�. Com-
bining the above result with Eq. �27�, we obtain

�C = 2�
�

��x����
H�y − ��f� + �f − ��2f�dx

+�
d�

���f · dN� . �29�

At a local minimum, �C should be zero for any �. This is true
if and only if the conditions below hold

��
H�y − ��f� + �f − ��2f = 0 on � , �30�

�f · N = 0 on d� , �31�

where N denotes the unit normal of the surface.

Appendix B—Derivation of the Optimal
Velocity Given f
In this appendix, we derive the optimal boundary velocity.
The standard procedure involves the construction of a family
of deformed shapes �t :�0=�, parametrized by an arbitrary
parameter t such that 0
 t
�. Usually, the deformations are
obtained by evolving the boundary of � by tv�x�, where v is
an arbitrary velocity.

Let us assume the cost function defined by the region in-
tegral J���=��g�x�dx, where g :R2→R. From the results in
continuum mechanics, the shape derivative of J under the

above transformation is given by Ref. 44
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�J��t�
�t

= lim
t→0

J�t
− J�

t
=�

��

gv · dN . �32�

Our goal is to find the optimal velocity v�x�, such that de-
forming � with v would maximally decrease J �minimize the
shape derivative�. Note that the shape derivative involves the
integral of the inner product between g�x�dN and v�x�. Using
the Cauchy-Schwartz inequality, one can obtain the optimal
velocity as −Re�g�x��N.

The last three terms in Eq. �10� are region integrals. Hence,
the shape derivative of these three terms is given by

��C2 + C3 + C4�
�t

=�
��

���f �2 + ���f �2 + ��v · dN . �33�

Using the chain rule of differentiation on the first term of Eq.

Fig. 8 Quantitative comparison of the performance of the algorithms
as a function of the SNR of the measurements. Note that the level-s
criteria, in clear agreement with the visual comparisons. The MSE cri
limitation of the MSE in comparing two piecewise constant functions
�10� and invoking Eq. �32�, we obtain
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�34�

=2�
d�

�eH�f�v · dN =�
d�

2�f*�He�v · dN . �35�

Combining Eqs. �33� and �35� and using the argument in Eq.
�32�, we obtain the optimal velocity as

vopt�x� = − Re�2f*��
H���f − y� + ��f �2 + ���f �2 + ��N .

e. We plot the reconstruction error, evaluated using different metrics,
rithm fares significantly better than the other under the SE and SCE
indicates worse results. As discussed below, this is mainly due to the
to nois
et algo
terion
�36�
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Fig. 9 Reconstruction of perturbation in oxyhemoglobin ��HbO2� and deoxyhemoglobin ��Hb� concentrations �in nanomoles/liter� in comparison
with the fMRI maps. Because many averages were used to suppress the noise, we used the same parameter set as in Fig. 3. The reconstructions are
constrained to the brain �gray matter and white matter�. Three slices overlaid on the mask of the brain are displayed. As expected, the NIRSI
reconstructions are biased to the cortical surface due to the exponential decay of sensitivity with depth. However, in comparision to CG and SIRT,
the level-set reconstructions more closely resemble the fMRI activation maps.
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