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INTRODUCTION 
Image quality in parallel MR imaging depends on three main factors: (1) coils’ sensitivity functions of the receiver system, (2) k-space sampling locations of the 
measured data, and (3) reconstruction methods. The problem of how to optimally sample k-space has received much less attention than the other two so far because of 
the complexity of the problem. Early parallel imaging methods, such as SMASH [1] and Cartesian SENSE [2], sample k-space using uniform Cartesian grids. It was 
soon recognized that non-uniform sampling can yield much better reconstructed images. SPACE-RIP [3], for example, can produce higher-quality images than the 
conventional SENSE by using heuristic k-space sampling patterns. A more rigorous approach was introduced recently in [4], where the desired image function is 
assumed to be a stationary Gaussian random process and the minimum mean-squared-error (MMSE) criterion is used to select the “optimal” k-space locations for 
collecting the phase-encoded data. This paper addresses the k-space sampling problem rigorously from a new perspective. Specifically, a signal-independent criterion 
was derived to guide the selection of optimal k-space locations for data collection, and a novel fast algorithm, based on sequential backward selection (SBS) [5], was 
proposed to solve the underlying optimization problem efficiently. Experimental results have demonstrated a significant improvement of the proposed method over 
SENSE and SPACE-RIP in terms of signal-to-noise-ratio (SNR) and aliasing artifacts. Theoretical analysis has also been carried out, which shows that the sampling 
patterns selected by the proposed algorithm are robust to small variations on the coils’ sensitivity functions.  

PROPOSED METHOD 
Optimal sampling with Cartesian grids (OSCAR) is studied in this paper. We assume a phased array of L coils and an NN × image. The goal is to choose M phase 
encoding lines out of the N uniformly spaced ones (each with N samples along the read-out direction) that give the minimum sum-of-squared error (SSE).  
A. Optimality Criterion 
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whereΨ is the noise correlation matrix. Thus, the optimal selection procedure boils down to the selection of the 2NLMN × sub-matrix S
~

 that gives the smallest value 
of (1). For simplicity, we consider the case whereΨ is identity matrix. The general case can be dealt with by using a Cholesky factorization [6] of Ψ followed by a 
change of variables. 

B. Fast Algorithm 
Determination of the M best phase encoding locations by exhaustive search is a combinatorial optimization problem whose complexity is prohibitive for practical 
application. We overcome this problem by generalizing the SBS algorithm [3] which provides a sub-optimal, but fast solution. Specifically, we start from the full 
encoding matrix S  and sequentially eliminate blocks of L  rows (each block corresponds to N samples of one phase encode line). At each step, we eliminate the blocks 
that give the least increment in the cost. Instead of directly calculating Eq. (1), we recursively update its value according to Sherman-Morrison formula [6]. We use a 
series of speed-up techniques such as storing H1H )

~~
( SSS − and utilizing the separability of 2D FFT. The whole process continues until M phase encodings are left.  

    The algorithm needs )( 4NO multiplies, as compared to )( 6NO multiplies if (1) were evaluated directly. The time taken for finding the optimal phase encoding 
locations for a 128128 × image is about 5 minutes on a 2.66GHz PC. 

C. Perturbation Analysis 
In practical applications, the sensitivity profiles are estimated; the estimation 
errors ∗∆S can lead to degradation of image quality. Denoting )( ∗Sf as SSE 

in the reconstruction corresponding to the optimal ∗S , we obtain  
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where )(⋅κ  is the condition number and 
F|||| ⋅ is the Frobenius norm. The 

above formula indicates that the drop-off in the image quality is insensitive to 
small perturbations of ∗S  when the condition number is small, which is the 
case when the number of phase encoding lines is not close to the limit. 

RESULTS 
A set of representative results is shown in Fig. 1, where a T1-weighted brain 
data was acquired using a four-coil array. Data from 54 phase encoding lines 
(reduction factor R = 2.37) was used for SENSE, SPACE-RIP and OSCAR. 
As shown in Fig. 1, OSCAR achieves the smallest SSE with minimum image 
artifacts. Much smaller geometry factors than SENSE and much smaller area 
of high geometry factors than SPACE-RIP are observed. 

CONCLUSION 
A new method is proposed to optimize k-space locations for data collection 
in parallel imaging. Experimental results show that the proposed method 
improves SNR and reduces aliasing artifacts of the reconstructed images as compared to SENSE and SPACE-RIP. The proposed method should prove useful for a range 
of practical applications where it is desirable to use optimal sampling of k-space to further improve the imaging speed and quality of parallel imaging. 
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Fig. 1. Reconstructions using uniform (SENSE), variable-density (SPACE-RIP) and 
optimal (OSCAR) samplings. The k-space coverage is depicted besides each 
reconstruction. Geometry factors are also plotted under corresponding reconstruction. 


