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Abstract—We introduce a novel algorithm for regularized
reconstruction of non-Cartesian MRI data. The proposed non-
iterative scheme closely approximates the Tikhonov regularized
least squares method, but provides a significant speed up over
standard implementation based on iterative conjugate gradi-
ent algorithm. This computational complexity of the proposed
scheme is comparable to that of gridding. However, the proposed
scheme is significantly more robust to undersampling and mea-
surement noise. Numerical simulations clearly demonstrate the
advantages of the proposed algorithm over traditional schemes.
The proposed algorithm may be very useful in dynamic and
functional MRI applications, where the fast reconstruction of
several undersampled images is required.

Index Terms—Magnetic Resonance Imaging, Sparse Recon-
struction, Orthogonal Matching Pursuits, Thikanov Regulariza-
tion.

I. INTRODUCTION

The reconstruction of images from its non-uniform Fourier
samples arise in many areas including tomography [1], mag-
netic resonance imaging [2], and synthetic aperture radar [3].
This problem is especially important in MRI, since many of
the modern pulse sequences exploit non-Cartesian sampling
schemes to significantly speed up dynamic and functional MRI
acquisitions.

The widely used non-Cartesian MRI reconstruction scheme
is gridding. Gridding schemes interpolate the non-uniform
Fourier samples, weighted by the density compensation kernel,
on to a uniform grid. The image is recovered from this data
using a simple IFFT, followed by weighting to compensate
for the interpolation. The simplicity and the computational
efficiency of gridding is the main reason for its widespread
use. Several authors have addressed the optimization of density
compensation functions, interpolators, and post-compensation
weights to improve the quality of gridding [4], [5], [6].

It is now well accepted that regularized least-squares
schemes are considerably more accurate and robust to noise
and under-sampling than gridding reconstructions. However,
the main limitation of this scheme is its computational com-
plexity, which is especially a problem when dealing with large
multi-dimensional datasets. For example, the reconstruction of
a typical spiral f-MRI dataset involves the recovery of around
1000 images; the direct use of CG to reconstruct each image
takes several hours to reconstruct the entire dataset.
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We propose a novel reconstruction algorithm to overcome
the above mentioned problems. Specifically, we aim to achieve
the accuracy of Tikhonov regularized method, but with almost
the same computational complexity of gridding algorithms.
The proposed scheme is a simple two-step algorithm, which
involves (a) replacing each non-uniform Fourier sample by
a weighted linear combination of a few non-uniform Fourier
samples in its neighborhood (b), and an inverse non-uniform
FFT (INUFFT) [7] scheme to recover the image from the
weighed linear combination. The proposed scheme is a gener-
alization of gridding, where the weighting of each non-uniform
sample is replaced by a weighted linear combination.

The proposed scheme is conceptually similar to BURS and
kSPA schemes [8], [5], introduced for un-regularized least-
squares reconstruction. Both methods replace the non-uniform
samples by a weighted linear combination of its N immediate
neighbors. The BURS method compute the weights from the
pseudo-inverse of an N×N sinc interpolation matrix. This is a
crude approximation and is reported to give algorithms that are
often sensitive to noise [9]. In contrast, kSPA poses the matrix
approximation as a Frobenius norm minimization scheme
similar to our approach. They decouple the approximation
problem into several least squares problems, thus solving them
efficiently.

The main difference of our approach with the above sparse
approximation schemes are (a) the ability to account for
Tikhonov regularization, and (b) the use of orthogonal match-
ing pursuits (OMP) to select the optimal sparsity pattern.
The use of Tikhonov regularization is crucial while dealing
with under-sampled trajectories; it can significantly minimize
aliasing artifacts over least square schemes and are much more
robust to measurement noise. In BURS and kSPA each non-
uniform sample is replaced by a weighted linear combination
of its N immediate neighbors. In contrast, we determine
the best non-uniform samples from the entire set. This sig-
nificantly reduces the approximation error for a specified
computational complexity. Hence, the proposed scheme can
give solutions that are closer to the exact solutions.

II. THEORY

A. Problem formulation

We restrict ourselves to considering two dimensional MRI
case for simplicity. The extension to multiple dimensions is
straightforward. The basic goal is to reconstruct an image
ρ(x);x ∈ R2 from its non-uniform Fourier measurements

ρ̂(ki) =
∫
x∈Ω

ρ(x) exp
(
j2πkT

i x
)
dx; i = 0 . . . , L− 1 (1)



Assuming rectangular voxels, we rewrite this expression as the
Fourier sum

ρ̂(ki) =
M−1∑
j=0

ρ[m] exp
(
j2πkT

i mj

)
; i = 0 . . . , L− 1 (2)

Collecting the measurements into an L dimensional vector,
denoted by b, the above summation can be rewritten in the
matrix form as

Ap = b, (3)

where the entries of the L×M system matrix A are Fourier
exponentials. The M × 1 vector p is the collection of voxel
values. b is the vector of measurements. In many cases of
practical importance, the system is under-determined and the
measurements are corrupted by noise.

The general approach to solving such underdetermined
problems is the Tikhonov regularized least-squares reconstruc-
tion:

p∗ = arg min
p
‖Ap− b‖2 + λ‖p‖2, (4)

where λ is an arbitrary regularization parameter. The solution
to this problem is given by

p∗ =
(
AT A + λI

)−1
AT b (5)

= AT

AAT + λI︸ ︷︷ ︸
P

−1

b (6)

The multiplication by AT can be implemented efficiently as
an INUFFT [7]. The operation P−1b involves replacing every
non-uniform sample with a weighted linear combination of the
set of non-uniform samples; the weights are specified by the
corresponding row of P−1.

If P−1 is a full matrix, each non-uniform sample has to
replaced by a linear combination of all the Fourier samples.
In addition, the system matrix A is very large in many
practical applications. This makes the evaluation, storage, and
reconstruction using a full P matrix is almost impossible. The
general practice in this setting is to solve for (4) using iterative
conjugate gradient algorithms. While this significantly accel-
erates the computation over straightforward matrix operations,
it is still too slow for large datasets, as discussed previously.
In this context, we propose to approximate P−1 with a sparse
matrix to obtain a fast and efficient algorithm.

B. Approximate inversion using a sparse matrix
The gridding scheme can be written in the matrix form as

p = AT Db, (7)

where D is a diagonal matrix with entries corresponding to
the density compensation factors. Thus, the gridding scheme
can be thought of as approximating P−1 with a diagonal
matrix; the accuracy and robustness of gridding reconstruction
is dependent on the quality of the approximation D ≈ P−1

[4].
To improve the approximation, we propose to approximate

P by a sparse matrix Q in the least squares sense as

Q = arg min
Q;Q∈N-sparse

‖QP− I‖2F (8)

Here, ‖P‖F is the Frobenius norm of P. Instead of modeling
Q as a diagonal matrix, we constrain each of the rows of Q to
have only N non-zero entries; we term denote such matrices
as N -sparse. Note that if we set, N = 1, we obtain the
gridding reconstruction. The computational complexity of the
reconstruction algorithm is dependent on N ; it is desirable to
minimize the approximation error ‖PQ− I‖2F , while keeping
N as low as possible.

We decouple the error criterion in (8) as

‖QP− I‖2F = ‖ PT︸︷︷︸
P

QT − I‖2F =
M∑
i=1

‖Pqi − δi‖2, (9)

where qi is the ith row of Q and δ is the Kroneker delta
function. Since each term of the summation is independent,
we can solve for qi, i = 0, .., N − 1 independently.

C. Determination of the optimal sparsity pattern

Classical schemes such as BURS and kSPA choose the
non-zero entries of a row to be the N non-uniform samples
that are nearest to the sample (nearest neighbor selection).
As discussed previously, the computational complexity of the
algorithm is dependent on how many neighbors are involved in
the weighted summation. We aim to improve the accuracy for
a specified computational complexity (i.e, N fixed) by deter-
mining the optimal sparsity pattern (see Fig 1). We propose to
use the orthogonal matching pursuits (OMP) algorithm, which
is a canonical greedy algorithm used for signal recovery from
sparse measurement matrices [10].

The OMP algorithm to determine qi with the optimal sparse
support (location of non-zero entries, indicated by T ) proceeds
sequentially, increasing the support of qi by one at each step,
starting with the initialization qi = 0;T = {}. At each step,
one performs the following operations to increment the support
by one.

1) Determine the proxy as

y = PT (Pqi − δi)︸ ︷︷ ︸
ri

.

The magnitude of the proxy at different samples is
indicative of the potential decrease in approximation
error, if that term is made non-zero. For large images,
the computation and storage of P is not possible, even
on modern computers. Hence, we propose to compute
the proxy using “on the fly computations”:

Pqi = NUFFT (INUFFT (qi)) + λqi (10)

and PT r as

PT r = NUFFT (INUFFT (r)) + λr (11)

The NUFFT operation involves the computation of the
FFT of a sequence followed by interpolating the FFT
onto a non-uniform grid [7]. This approch makes the
algorithm computationally feasible for large image sizes.

2) The location corresponding to the maximum value of
y is used to update the support T . i.e, we will update
T = {T, arg maxi |yi|}.



(a) Unregularized sparsity pattern

(b) Regularized sparsity pattern

Fig. 1. We focus on two non-uniform Fourier sampling locations indicated
by green dots in the above figures. The sparsity pattern corresponding to the
dot in the center is indicated in red, while that of the one of the periphery
is shown in black. Note that the sparsity patterns does not correspond to the
immediate neighbors as assumed by [kspa,burs]. It is interesting to note that
the sparsity pattern corresponding to the sample on the periphery also includes
samples in the center of k-space. The added degree of freedom significantly
decreases the reconstruction errors as shown Fig. 2

3) Determine the optimal qi, assuming the support to be
T . This is obtained as

qi = arg min
qi

‖PT qi − δi‖2 (12)

Here, PT is a sub-matrix of P obtained by picking the
rows of P corresponding to the support T . Again, since
it is often difficult to compute and store P, we compute
the ith row of PT as

PTi = PδTi = NUFFT (INUFFT) (δTi) + λδTi (13)

The ith row of PT is determined by setting the T th
i non-

uniform sample by one and then computing the INUFFT
and NUFFT as described above. We determine qi as
qi = P#

T δi, where P# indicates the pseudo-inverse of
P.

The above operations are repeated until a specified support size
is achieved. It was also observed that beyond a certain support
size (see Fig.2), the reduction in the reconstruction error was
negligible in comparison to the increase in the computation
time. If we set the support size to be one, we will obtain a
scheme similar to gridding; the weights will correspond to the
optimal density compensation functions.

Fig. 2. Error with increasing support sizes. The error due to the supports
chosen using nearest neighbor is not monotonically decreasing. Since it is a
heuristic approach to selecting supports it may not work well with all types
of sampling trajectories.

III. RESULTS

In this section, we will analyze the proposed scheme.
Specifically, we will study the sparsity patterns and the im-
provement obtained by optimizing the patterns over selecting
nearest neighbors. We will also compare the proposed schemes
conjugate gradient and gridding reconstructions. For all the
studies, we rely on the two dimensional 64x64 Shepp-Logan
phantom and assumed a spiral trajectory.

A. Sparsity patterns of the Q matrix

We study the effect of sparsity patterns where we focus on
regularized and unregularized reconstructions. We focus on
two regions, one at the centre of k space and the other at the
periphery. For optimal supports, points located at the periphery
have supports at the centre of k space (Fig.1). The standard
nearest neighbor selection fails to capture these points and thus
results in higher reconstruction errors as shown in Fig 2. Also
for the regularized case we see that the sparsity pattern in the
central regions is more clustered than for the unregularized
case.

B. Unregularized reconstruction

We will now compare the performance of the algorithm
in a Nyquist sampled trajectory with λ = 0. We performed
the reconstructions using standard CG algorithm, the proposed
scheme at N=10 and N=5, as well as the gridding. The results
are shown in Fig. 3. Note that the CG reconstructions are well
approximated by the proposed scheme, while the computation
time of the proposed scheme is lower by a factor of 70. The
computation time of the proposed scheme is close to that of
gridding. However, the reconstruction errors are significantly
reduced over gridding.

C. Regularized reconstruction

To study the utility of regularization, we consider a four-
fold under-sampled trajectory. The comparisons are shown in
Fig. 4. Note that the CG reconstruction and the proposed



scheme with N = 20 are in good agreement. Both the
algorithms are capable of recovering the small features, inspite
of the four-fold under-sampling. In contrast, the gridding
reconstructions have significant aliasing artifacts. The ability
to perform regularized reconstructions in a computation time
that is comparable to gridding is a significant benefit in
dynamic MRI applications, where acquiring fully sampled data
might result in lower temporal resolution.

(a) CG;t=2.21s; er=3.05% (b) N=10; t=0.032s; er=8.12%

(c) N=5; t=0.031s; er=8.12% (d) Gridding;t=0.029s; er=30.26%

(e) CG (f) N=20 (g) N=10 (h) Gridding

Fig. 3. Comparison of reconstructions from Nyquist sampled non-Cartesian
data, obtained using different algorithms. The proposed reconstructions are
comparable to that obtained using CG.

IV. CONCLUSIONS

We proposed a novel algorithm to reconstruct non Cartesian
MRI data. We reformulated the recovery as the multiplication
by a sparse matrix, followed by a non-uniform IFFT. We de-
rived the optimal sparsity pattern of the matrix, thus decreasing
the reconstruction error for a specified computational complex-
ity. The reconstructions obtained by the proposed algorithm is
a good approximation to the one obtained by using conjugate
gradients algorithm. However, the computational complexity
of the proposed scheme is comparable to gridding schemes,
which is significantly lower than conjugate gradients methods.
The ability to account for regularization makes the proposed
approach ideal for the reconstruction of large undersampled,
noisy dynamic/functional MRI datasets.
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