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ABSTRACT

We propose a new algorithm for the estimation of functional
activations in diffuse optical imaging. Our approach consid-
ers the activations to be support limited. We simultaneously
estimate the function values as well as the support from
the available measurements. Since this scheme exploit the
structure inherent to functional imaging, it provide recon-
structions with better spatial resolution and is more robust
to noise.

I. INTRODUCTION

High temporal resolution and sensitivity to oxy and de-oxy
heamoglobin concentrations in diffuse optical imaging(DOI)
makes it an attractive technique for functional brain imaging
[1], [2]. However, its main drawback is the limited spatial
resolution, mainly due to the diffuse nature of light propa-
gation, few source detector pairs, noisy measurements, and
limited penetration of light into the brain.

The classical linear reconstruction techniques are currently
the widely used schemes in DOI [3]. These techniques being
general, are not efficient to exploit the structure inherent to
the problem. The main focus of this paper is to develop a new
reconstruction algorithm to improve the spatial resolution
as well the robustness to noise. Since our approach utilize
the sparsity, the connectedness of the activations, and the
smooth nature of activations over the support, we obtain
more robust reconstructions with improved spatial resolu-
tion. In traditional schemes, the reconstruction is made well
posed by restricting the solution to a low-dimensional eigen-
space of the system matrix. This space, do not represent the
class of natural images, in general, and hence may result in
artifacts. In comparison, the new method enforce constraints
that are expected in a natural setting to obtain better-posed
reconstructions.

Since we have to enforce extra constraints in addition
to sparsity, the standard /; minimization approach to solve
sparse problems [4] cannot be used in our setting. We pro-
pose an algorithm based on variational principles, which is
an extension of [5]. We consider the support of the ac-
tivated regions and the function values over this support
as unknowns and solve for them using a two-step iterative
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scheme. In the first step, we assume an initial support and
solve for the activations over this region using the conjugate
gradients optimization algorithm. In the next step, we evolve
the support so as to minimize an appropriate cost function.

II. PRELIMINARIES

In this section, we formulate the forward problem. Assum-
ing the perturbation of the absorption coefficient (denoted by
Apg(x)) to be small, the corresponding perturbation in the
optical fluence at the j'"detector due to the i*" source is

No(i,§) = /R3 Ki (%) A g (x)dx. (1)

The sensitivity functions «; ;(x) are termed as light bun-
dles in the diffuse optical imaging (DOI) literature. It is
experimentally observed that the measurement noise is a
zero-mean Gaussian process with standard deviation propor-
tional to the amplitude of the baseline signal. Collecting the
measurements corresponding to the different source-detector
pairs into a single vector, and denoting f(x) = Apu,(x), we
obtain

y= /RS K(x) f(x)dx + . (2)

The main issue in the inversion of this linear problem is the
limited number of source detector pairs, the large number of
unknowns, and the noisy nature of the measurements.

III. RECONSTRUCTION

By collecting the voxel values of f(x) into a vector f, the
forward model (3) can be expressed as a matrix equation y =
Af +n. Each voxel in the reconstructed image constitutes a
column of A. Similarly, a measurement corresponds to a row
in A. In typical diffuse optical imaging (DOI) measurements,
the number of columns are far greater than that of the rows,
resulting in an ill-posed problem.

Similar ill-posed problems were considered in the context
of sparse sampling theory, where it is shown that a sparse
signal can be recovered uniquely from few measurements.
It is shown in [4], [6] that if the sub-matrix of A, ob-
tained by selecting any of its M columns is invertible, an
activation pattern with at-most M non-zero voxels can be
uniquely reconstructed with probability one. Unfortunately,
the maximum M, such that the condition number of every
M x M sub-matrix of A is reasonably low, is fairly small
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Fig. 1. The setup of the reconstruction algorithm illustrated
in 2-D.  denotes the region of activation (where the
function f is assumed to be non-zero). df? is the boundary
of  and N (z) is the unit outward normal to the boundary.
D denotes mask of the brain region, and &; ;(x) is the light
bundle. With this assumption of f being zero in D \ €2, the
forward model can be formulated as (3).

for the DOI forward model (M <= 16). Thus sparsity
alone cannot ensure the uniqueness of the reconstructions.
We propose to enforce additional constraints that are relevant
to the functional imaging context (eg. active regions being
connected, the boundary of the activations being smooth,
the activation pattern being smooth) to further reduce the
degrees of freedom. With these added constraints, we would
be searching for an activation pattern in the class of recon-
structions that satisfy these constraints; we hypothesize that
these constraints along with sparsity will ensure well-posed
reconstructions.

Since we have to enforce additional constraints, it is not
possible to use standard algorithms for sparse optimization
like linear programming. Hence, we propose an alternate
algorithm using variational principles. Assuming the acti-
vations to be support limited to subregions of the brain
specified by 2 C D (see Fig. 1), we express the forward
model as

y = | (s Godx 41, 3)
R3
where
| ra(x) ifxeQ
Ka(x) = { 0 otherwise @)

In the above equation, both the function values and the
support of f in (3) are unknowns. We pose the estimation of
these quantities as a numerical optimization problem, where
the cost function is

CULY) = ly—rafld +A /QIVfIde

+u/|f|2dx+1//dx 5)
Q Q

The first term in the above equation is a measure of the data
consistency. ||||w denotes the weighted Iy norm: ||y||3y =
I[Wy/||?. We choose the weighting matrix W = diag(1/~),
where ~ is the baseline signal vector to whiten the noise

process. We now simplify this weighted /5 norm to the stan-
dard I3 norm by considering y' = Wy and k' = Wk. For
the rest of the paper, we make this assumption. However,
we will just denote y’ and s’ by y and k respectively.

The second and third terms in (5) are the standard Tikhonov
regularization terms. As A\ — oo, V f would only be sup-
ported on df2, the boundary of . In this case, we would
be reconstructing a piecewise constant function f. The last
term in (5) constrains the volume of the activations. It en-
sures that the estimation of the support €2 is well-posed. The
parameters A, 1 and v control the strength of the additional
constraints relative to the data consistency constraint. Note
that in the absence of the second and third terms, the cost
function is an [y minimization problem; one tries to find an
f with the smallest support.

The reconstruction of the activation pattern thus reduces
to the minimization of (5): f* = argmins o C(f,). We
use a two-step alternating minimization algorithm to solve
this problem. In the first step, we estimate the optimal f,
assuming {2 to be known. In the next step, we update 2,
assuming the value of f from the previous iteration. The
derivation of the optimal f given {2 can be formulated as

f*:argmfin ||Y—ngf||2+u/|f|2dx+)\/ |Vf|2dx}
J Q Q
(6)

Note that we omitted the last term in (5) since it is inde-
pendent of f. Using variational principles, we show that the
solution to this problem satisfy the linear conditions:

(kEKq) f+uf — AV =
VN

k" y; on
0; on df2, @)

where A/ denote the unit normal of the surface d$2 and v;.v
denote the dot-product between v; and vs. The operator
xH denotes the adjoint of . Assuming a discrete image
model and finite difference approximation of the derivative
operator, (7) can be reformulated as an Ax = b problem. We
use conjugate gradients algorithm to solve for the optimal
f

In the second step, we update the current estimate of
), assuming the value of f to be known. The standard
procedure is to evolve the boundary df) with a specified
speed v(x) along the unit outward normal of df) (denoted
by N). The speed function is chosen such that the cost
function (5) is minimized; We show that the speed function
that optimally minimize the cost is given by

vopt (%) = Re (=2f" kfl (5 f —y) + plf > + XV S +v)

3
Note that this scheme is equivalent to minimizing C with
respect to 2 using a steepest descend algorithm. We use the
level-set scheme to represent the region boundaries due to
its efficiency in dealing with volumes of arbitrary topology.
The boundary df2; at the time instant ¢ is represented as the
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Fig. 2. Reconstruction in the presence of noise. The range of the original signal is scaled to be in the range 0 — 100; the same
scale factor is applied to the reconstructions as well. Note that the SIRT and CG give smooth reconstructions. Also note
that their amplitudes (from the colorbar) are not in good agreement with the original. On the other hand the new algorithm
gave reasonable reconstructions indicating its improved resolving capability. The reconstructions took approximately 51s on

a Pentium 4, 3.2 GHz computer.

zero level set of a 3-D function ¢(x) : R?® — R: d) =
{x € R?¥| ¢+(x) = 0}. The support of f is given by

Q= {x € R’ ¢4(x) > 0} ©)

In the level-set framework, the deformation of the region
from §2; to ;,1, by evolving the boundary with a velocity
v(x), is obtained by solving the partial differential equation

o¢

o = ¢Vl (10)
If the boundary flow, specified by the above equation, is ex-
tended over the entire domain, the evolution of the domain 2
can be handled easily by solving (10) on a regular Cartesian
grid.

The algorithm starts with an initial €. Initializing the
algorithm far from the real boundaries will require the al-
gorithm a lot of iterations to converge. This results in a
slow algorithm. Moreover, there is also the chance of the
algorithm being misguided to local minima. Hence, we use a
few iterations of the CG algorithm to initialize the algorithm.
We define the initial potential function as

$o(x) = |u(x)| =T, (11)

where u(x) is the reconstruction given by the SIRT algo-
rithm after a few iterations. 7' is an appropriately chosen
threshold such that a reasonably sized region is chosen as
Qg. From practical trials, we find that the reconstruction is
not dependent on the choice of 7', except for changes in the
number of iterations and consequently the computation time.

Note that the expression for the velocity (8) is valid only
at the boundary df2. One approach is to use a narrow-band
scheme to update the level-set in the proximity of df). This
approach, though computationally efficient, when carefully
programmed, could introduce instabilities in the evolution.
Hence, we would have to re-initialize the potential function
after a few iterations. Another option is to use an extension
to the velocity so that the potential function is well-behaved.

We use the scheme proposed in [5] since it encourages the
formation of regions away from the current boundary.

Vopt (X) on QU dQ)
v(x) = { _Re {w* (RD\Q)* (kaf — y)} on D\ (QUdQ)
(12)

Here, the function w(x) is chosen as
w(x) = ¢(x) £ (u(x)) (13)

Here, ¢(x), is the current potential function and £ (u(x)) is
the angle of the initialization (11).

IV. RESULTS AND OBSERVATIONS

We use a Monte-Carlo simulation of the optical transport
problem on a segmented MPRAGE MRI brain scan, dis-
cussed in [7], to generate the light bundles. We assumed
the source-detector configuration in [7] for the simulations;
16 sources arranged in a circular pattern and 4 detectors in
the center is used to obtain 64 source-detector pairs. Blob-
like perturbations (see Fig. III) are inserted on the cortical
region (10% of the original absorption coefficient) and the
corresponding perturbed fluence measurements are obtained.
Based on experimental evidence, we set the standard devi-
ation of the noise process to be 2% of the baseline signal.
Since this corresponds to a very noisy scenario, it is common
practice to average [N successive measurements to improve
the signal to noise ratio (SNR). In our study, we typically use
around 50-100 averages; the resulting temporal resolution is
still sufficient for heamo-dynamic studies.

We compare the new approach to the standard approaches

for DOI reconstructions: SIRT and truncated conjugate-gradients

(CG) methods. Since the ground truth is difficult to obtain
from a real scan, we base the comparisons entirely on sim-
ulated data. The optimal parameters (number of iterations
in CG and SIRT and the parameters A, u and v in the new
algorithm) are determined with the knowledge of the ground
truth; we determined the parameters by comparing the recon-
structions to the original for a particular perturbation at the



specified noise level. This parameter set was then used for
all experiments at this noise level.

In Fig 2, we demonstrate the algorithm when there are two
activated regions. Note that the SIRT and CG algorithms give
a uniformly smooth reconstructions; it is not possible to sep-
arate the two regions. On the other hand, the new algorithm
is capable of separating the two activations, although the
shapes are distorted. This indicates that the new approach
can resolve near-by structures better.

We now compare different algorithms by comparing the
estimates with the ground truth f,. Here, we considered
the case with only one activation. We use different metrics
for comparison:

(a) Mean squared error: The mean squared error in es-
timation is given by MSE = [o, | fo"8(x) — fest (x)|2 dx.
While this error term is widely used and is simple, it can be
misleading in our setting. Since the level-set algorithm would
give piece-wise smooth reconstructions, the MSE would in-
dicate larger errors even when the support of the reconstruc-
tions are only slightly off from the real ones.

(b) Support error (SE): Using an automatic algorithm, we
classify the reconstructions into two regions (activated and
background). The estimated supports of the activations are
then compared to the real supports to obtain the support
error. Note that the above metric accounts for the misclassi-
fied voxels in the reconstruction and ignores any amplitude
changes. This metric probably makes better sense for the
comparison of reconstructions of functional activations.

(c) Support centroid error (SCE): Here the distance be-
tween the centroids of the original activation and that of
the detected activation is chosen as the error measure. This
approach uses the classification from the earlier metric.

Using these error measures, we quantitatively compare the
performance of the algorithms (new approach, CG and SIRT)
as a function of the number of averages. Note that the square-
root of the number of averages is inversely proportional to
the SNR. The results are displayed in Fig.3. Note that the
new algorithm fares better under two of the criteria (SE and
SCE). However, under the mean-squares criterion (MSE), it
perform worser than the others. As we have explained before,
this is due to the inherent weakness of MSE to compare
piece-wise constant functions.

V. CONCLUSIONS

We proposed a new algorithm to estimate functional ac-
tivations from diffuse optical imaging. The quantitative and
qualitative comparisons demonstrate the improved resolution
and robustness of this algorithm over standard linear tech-
niques.
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