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ABSTRACT

We propose a new algorithm for the estimation of functional

activations in diffuse optical imaging. Our approach consid-

ers the activations to be support limited. We simultaneously

estimate the function values as well as the support from

the available measurements. Since this scheme exploit the

structure inherent to functional imaging, it provide recon-

structions with better spatial resolution and is more robust

to noise.

I. INTRODUCTION

High temporal resolution and sensitivity to oxy and de-oxy

heamoglobin concentrations in diffuse optical imaging(DOI)

makes it an attractive technique for functional brain imaging

[1], [2]. However, its main drawback is the limited spatial

resolution, mainly due to the diffuse nature of light propa-

gation, few source detector pairs, noisy measurements, and

limited penetration of light into the brain.

The classical linear reconstruction techniques are currently

the widely used schemes in DOI [3]. These techniques being

general, are not efficient to exploit the structure inherent to

the problem. The main focus of this paper is to develop a new

reconstruction algorithm to improve the spatial resolution

as well the robustness to noise. Since our approach utilize

the sparsity, the connectedness of the activations, and the

smooth nature of activations over the support, we obtain

more robust reconstructions with improved spatial resolu-

tion. In traditional schemes, the reconstruction is made well

posed by restricting the solution to a low-dimensional eigen-

space of the system matrix. This space, do not represent the

class of natural images, in general, and hence may result in

artifacts. In comparison, the new method enforce constraints

that are expected in a natural setting to obtain better-posed

reconstructions.

Since we have to enforce extra constraints in addition

to sparsity, the standard l1 minimization approach to solve

sparse problems [4] cannot be used in our setting. We pro-

pose an algorithm based on variational principles, which is

an extension of [5]. We consider the support of the ac-

tivated regions and the function values over this support

as unknowns and solve for them using a two-step iterative
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scheme. In the first step, we assume an initial support and

solve for the activations over this region using the conjugate

gradients optimization algorithm. In the next step, we evolve

the support so as to minimize an appropriate cost function.

II. PRELIMINARIES

In this section, we formulate the forward problem. Assum-

ing the perturbation of the absorption coefficient (denoted by

△µa(x)) to be small, the corresponding perturbation in the

optical fluence at the jthdetector due to the ith source is

△φ(i, j) =

∫

R3

κi,j(x)△µa(x)dx. (1)

The sensitivity functions κi,j(x) are termed as light bun-

dles in the diffuse optical imaging (DOI) literature. It is

experimentally observed that the measurement noise is a

zero-mean Gaussian process with standard deviation propor-

tional to the amplitude of the baseline signal. Collecting the

measurements corresponding to the different source-detector

pairs into a single vector, and denoting f(x) = △µa(x), we

obtain

y =

∫

R3

κ(x)f(x)dx + η. (2)

The main issue in the inversion of this linear problem is the

limited number of source detector pairs, the large number of

unknowns, and the noisy nature of the measurements.

III. RECONSTRUCTION

By collecting the voxel values of f(x) into a vector f , the

forward model (3) can be expressed as a matrix equation y =
Af +η. Each voxel in the reconstructed image constitutes a

column of A. Similarly, a measurement corresponds to a row

in A. In typical diffuse optical imaging (DOI) measurements,

the number of columns are far greater than that of the rows,

resulting in an ill-posed problem.

Similar ill-posed problems were considered in the context

of sparse sampling theory, where it is shown that a sparse

signal can be recovered uniquely from few measurements.

It is shown in [4], [6] that if the sub-matrix of A, ob-

tained by selecting any of its M columns is invertible, an

activation pattern with at-most M non-zero voxels can be

uniquely reconstructed with probability one. Unfortunately,

the maximum M , such that the condition number of every

M × M sub-matrix of A is reasonably low, is fairly small
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Fig. 1. The setup of the reconstruction algorithm illustrated

in 2-D. Ω denotes the region of activation (where the

function f is assumed to be non-zero). dΩ is the boundary

of Ω and N (x) is the unit outward normal to the boundary.

D denotes mask of the brain region, and κi,j(x) is the light

bundle. With this assumption of f being zero in D \ Ω, the

forward model can be formulated as (3).

for the DOI forward model (M <= 16). Thus sparsity

alone cannot ensure the uniqueness of the reconstructions.

We propose to enforce additional constraints that are relevant

to the functional imaging context (eg. active regions being

connected, the boundary of the activations being smooth,

the activation pattern being smooth) to further reduce the

degrees of freedom. With these added constraints, we would

be searching for an activation pattern in the class of recon-

structions that satisfy these constraints; we hypothesize that

these constraints along with sparsity will ensure well-posed

reconstructions.

Since we have to enforce additional constraints, it is not

possible to use standard algorithms for sparse optimization

like linear programming. Hence, we propose an alternate

algorithm using variational principles. Assuming the acti-

vations to be support limited to subregions of the brain

specified by Ω ⊆ D (see Fig. 1), we express the forward

model as

y =

∫

R3

κΩ(x)f(x)dx + η, (3)

where

κΩ(x) =

{

κΩ(x) if x ∈ Ω
0 otherwise

(4)

In the above equation, both the function values and the

support of f in (3) are unknowns. We pose the estimation of

these quantities as a numerical optimization problem, where

the cost function is

C(f,Ω) = ‖y − κΩf‖2
W

+ λ

∫

Ω

|∇f |2 dx

+µ

∫

Ω

|f |2 dx + ν

∫

Ω

dx (5)

The first term in the above equation is a measure of the data

consistency. ‖‖W denotes the weighted l2 norm: ‖y‖2
W

=
‖Wy‖2. We choose the weighting matrix W = diag(1/γ),
where γ is the baseline signal vector to whiten the noise

process. We now simplify this weighted l2 norm to the stan-

dard l2 norm by considering y′ = Wy and κ
′ = Wκ. For

the rest of the paper, we make this assumption. However,

we will just denote y′ and κ
′ by y and κ respectively.

The second and third terms in (5) are the standard Tikhonov

regularization terms. As λ → ∞, ∇f would only be sup-

ported on dΩ, the boundary of Ω. In this case, we would

be reconstructing a piecewise constant function f . The last

term in (5) constrains the volume of the activations. It en-

sures that the estimation of the support Ω is well-posed. The

parameters λ, µ and ν control the strength of the additional

constraints relative to the data consistency constraint. Note

that in the absence of the second and third terms, the cost

function is an l0 minimization problem; one tries to find an

f with the smallest support.

The reconstruction of the activation pattern thus reduces

to the minimization of (5): f∗ = arg minf,Ω C(f,Ω). We

use a two-step alternating minimization algorithm to solve

this problem. In the first step, we estimate the optimal f ,

assuming Ω to be known. In the next step, we update Ω,

assuming the value of f from the previous iteration. The

derivation of the optimal f given Ω can be formulated as

f∗ = arg min
f

[

‖y − κΩf‖2 + µ

∫

Ω

|f |2 dx + λ

∫

Ω

|∇f |2 dx

]

(6)

Note that we omitted the last term in (5) since it is inde-

pendent of f . Using variational principles, we show that the

solution to this problem satisfy the linear conditions:

(

κ
H
Ω κΩ

)

f + µf − λ∇2f = κΩ
∗ y; on Ω

∇f · N = 0; on dΩ, (7)

where N denote the unit normal of the surface dΩ and v1.v2

denote the dot-product between v1 and v2. The operator

κ
H denotes the adjoint of κ. Assuming a discrete image

model and finite difference approximation of the derivative

operator, (7) can be reformulated as an Ax = b problem. We

use conjugate gradients algorithm to solve for the optimal

f .

In the second step, we update the current estimate of

Ω, assuming the value of f to be known. The standard

procedure is to evolve the boundary dΩ with a specified

speed v(x) along the unit outward normal of dΩ (denoted

by N ). The speed function is chosen such that the cost

function (5) is minimized; We show that the speed function

that optimally minimize the cost is given by

vopt (x) = Re
(

−2f∗
κ

H
Ω (κΩf − y) + µ |f |2 + λ |∇f |2 + ν

)

(8)

Note that this scheme is equivalent to minimizing C with

respect to Ω using a steepest descend algorithm. We use the

level-set scheme to represent the region boundaries due to

its efficiency in dealing with volumes of arbitrary topology.

The boundary dΩt at the time instant t is represented as the
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Fig. 2. Reconstruction in the presence of noise. The range of the original signal is scaled to be in the range 0−100; the same

scale factor is applied to the reconstructions as well. Note that the SIRT and CG give smooth reconstructions. Also note

that their amplitudes (from the colorbar) are not in good agreement with the original. On the other hand the new algorithm

gave reasonable reconstructions indicating its improved resolving capability. The reconstructions took approximately 51s on

a Pentium 4, 3.2 GHz computer.

zero level set of a 3-D function φt(x) : R
3 → R: dΩ =

{x ∈ R
3| φt(x) = 0}. The support of f is given by

Ω = {x ∈ R
3| φt(x) > 0} (9)

In the level-set framework, the deformation of the region

from Ωt to Ωt+1, by evolving the boundary with a velocity

v(x), is obtained by solving the partial differential equation

∂φ

∂t
= v |∇φ| (10)

If the boundary flow, specified by the above equation, is ex-

tended over the entire domain, the evolution of the domain Ω
can be handled easily by solving (10) on a regular Cartesian

grid.

The algorithm starts with an initial Ω. Initializing the

algorithm far from the real boundaries will require the al-

gorithm a lot of iterations to converge. This results in a

slow algorithm. Moreover, there is also the chance of the

algorithm being misguided to local minima. Hence, we use a

few iterations of the CG algorithm to initialize the algorithm.

We define the initial potential function as

φ0(x) = |u(x)| − T, (11)

where u(x) is the reconstruction given by the SIRT algo-

rithm after a few iterations. T is an appropriately chosen

threshold such that a reasonably sized region is chosen as

Ω0. From practical trials, we find that the reconstruction is

not dependent on the choice of T , except for changes in the

number of iterations and consequently the computation time.

Note that the expression for the velocity (8) is valid only

at the boundary dΩ. One approach is to use a narrow-band

scheme to update the level-set in the proximity of dΩ. This

approach, though computationally efficient, when carefully

programmed, could introduce instabilities in the evolution.

Hence, we would have to re-initialize the potential function

after a few iterations. Another option is to use an extension

to the velocity so that the potential function is well-behaved.

We use the scheme proposed in [5] since it encourages the

formation of regions away from the current boundary.

v(x) =

{

vopt (x) on Ω ∪ dΩ

−Re
[

w∗
(

κD\Ω

)∗
(κΩf − y)

]

on D \ (Ω ∪ dΩ)

(12)

Here, the function w(x) is chosen as

w(x) = φ(x)∠ (u(x)) (13)

Here, φ(x), is the current potential function and ∠ (u(x)) is

the angle of the initialization (11).

IV. RESULTS AND OBSERVATIONS

We use a Monte-Carlo simulation of the optical transport

problem on a segmented MPRAGE MRI brain scan, dis-

cussed in [7], to generate the light bundles. We assumed

the source-detector configuration in [7] for the simulations;

16 sources arranged in a circular pattern and 4 detectors in

the center is used to obtain 64 source-detector pairs. Blob-

like perturbations (see Fig. III) are inserted on the cortical

region (10% of the original absorption coefficient) and the

corresponding perturbed fluence measurements are obtained.

Based on experimental evidence, we set the standard devi-

ation of the noise process to be 2% of the baseline signal.

Since this corresponds to a very noisy scenario, it is common

practice to average N successive measurements to improve

the signal to noise ratio (SNR). In our study, we typically use

around 50-100 averages; the resulting temporal resolution is

still sufficient for heamo-dynamic studies.

We compare the new approach to the standard approaches

for DOI reconstructions: SIRT and truncated conjugate-gradients

(CG) methods. Since the ground truth is difficult to obtain

from a real scan, we base the comparisons entirely on sim-

ulated data. The optimal parameters (number of iterations

in CG and SIRT and the parameters λ, µ and ν in the new

algorithm) are determined with the knowledge of the ground

truth; we determined the parameters by comparing the recon-

structions to the original for a particular perturbation at the



specified noise level. This parameter set was then used for

all experiments at this noise level.

In Fig 2, we demonstrate the algorithm when there are two

activated regions. Note that the SIRT and CG algorithms give

a uniformly smooth reconstructions; it is not possible to sep-

arate the two regions. On the other hand, the new algorithm

is capable of separating the two activations, although the

shapes are distorted. This indicates that the new approach

can resolve near-by structures better.

We now compare different algorithms by comparing the

estimates with the ground truth forig. Here, we considered

the case with only one activation. We use different metrics

for comparison:

(a) Mean squared error: The mean squared error in es-

timation is given by MSE =
∫

R3

∣

∣forig(x) − f est(x)
∣

∣

2
dx.

While this error term is widely used and is simple, it can be

misleading in our setting. Since the level-set algorithm would

give piece-wise smooth reconstructions, the MSE would in-

dicate larger errors even when the support of the reconstruc-

tions are only slightly off from the real ones.

(b) Support error (SE): Using an automatic algorithm, we

classify the reconstructions into two regions (activated and

background). The estimated supports of the activations are

then compared to the real supports to obtain the support

error. Note that the above metric accounts for the misclassi-

fied voxels in the reconstruction and ignores any amplitude

changes. This metric probably makes better sense for the

comparison of reconstructions of functional activations.

(c) Support centroid error (SCE): Here the distance be-

tween the centroids of the original activation and that of

the detected activation is chosen as the error measure. This

approach uses the classification from the earlier metric.

Using these error measures, we quantitatively compare the

performance of the algorithms (new approach, CG and SIRT)

as a function of the number of averages. Note that the square-

root of the number of averages is inversely proportional to

the SNR. The results are displayed in Fig.3. Note that the

new algorithm fares better under two of the criteria (SE and

SCE). However, under the mean-squares criterion (MSE), it

perform worser than the others. As we have explained before,

this is due to the inherent weakness of MSE to compare

piece-wise constant functions.

V. CONCLUSIONS

We proposed a new algorithm to estimate functional ac-

tivations from diffuse optical imaging. The quantitative and

qualitative comparisons demonstrate the improved resolution

and robustness of this algorithm over standard linear tech-

niques.
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