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Abstract—Parametric active contour models are one of the
preferred approaches for image segmentation because of their
computational efficiency and simplicity. However, they have a
few drawbacks which limit their performance. In this paper, we
identify some of these problems and propose efficient solutions
to get around them. The widely-used gradient magnitude-based
energy is parameter dependent; its use will negatively affect
the parametrization of the curve and, consequently, its stiffness.
Hence, we introduce a new edge-based energy that is independent
of the parameterization. It is also more robust since it takes into
account the gradient direction as well. We express this energy
term as a surface integral, thus unifying it naturally with the
region-based schemes. The unified framework enables the user to
tune the image energy to the application at hand. We show that
parametric snakes can guarantee low curvature curves, but only
if they are described in the curvilinear abscissa. Since normal
curve evolution do not ensure constant arc-length, we propose
a new internal energy term that will force this configuration.
The curve evolution can sometimes give rise to closed loops in
the contour, which will adversely interfere with the optimization
algorithm. We propose a curve evolution scheme that prevents
this condition.

Index Terms—Active contour, curve, segmentation, snake,
spline.

I. INTRODUCTION

SNAKES or active contour models have proven to be very
effective tools for image segmentation. An active contour

model is essentially a curve that evolves from an initial position
toward the boundary of an object in such a way as to minimize
some energy functional. The popularity of this semiautomatic
approach may be attributed to its ability to aid the segmentation
process with a priori knowledge and user interaction.

Extensive research in this area has resulted in many snake
variants [1], [2]; these are distinguished mainly by the type of
curve representation used and the choice of the image energy
term. The popular curve representation schemes in the snake
literature are as follows:

1) point-based snakes, where the curve is an ordered collec-
tion of discrete points (also termed as snaxels) [3]–[5];

2) parametric snakes, where the curve is described continu-
ously in a parametric form, using basis functions such as
B-splines [6]–[9], Fourier exponentials [10], [11], etc.;
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3) geometric snakes, where the planar curve is represented
as a level set of an appropriate two-dimensional surface
[12]–[16].

The point-based approach can be viewed as a special case
of parametric curve representation where the basis functions
are uniform translates of a B-spline of degree zero;1 likewise,
parametric approaches using smooth basis functions will tend
to the point-based scheme as the number of basis functions in-
creases. In general, however, representations using smooth basis
functions require fewer parameters than point-based approaches
and, thus, result in faster optimization algorithms [6], [10], [17].
Moreover, such curve models have inherent regularity and hence
do not require extra constraints to ensure smoothness [9], [17].

Since both the above mentioned schemes represent the curve
explicitly, it is easy to introduce a priori shape constraints into
the snake framework [10], [18]–[20]. It is also straightforward
to accommodate user interaction; this is often done by allowing
the user to specify points through which the curve should go
through [3]. However, these models offer less flexibility in ac-
counting for topological changes during the curve evolution.
One will have to perform some extra bookkeeping to accom-
modate changes in topology.

Geometric approaches offer great flexibility as far as the
curve topology is considered; they presently constitute a very
promising research area [14]–[16]. However, they tend to be
computationally more complex since they evolve a surface
rather than a curve. Also, since the curve representation is
implicit, it is much more challenging to introduce shape priors
into this framework [21].

In this paper, we focus on general parametric snakes due to its
computational advantages and simplicity. We will start by taking
a critical look at them, identifying some of their limitations and
proposing some improvements to make them more attractive.

There are many different image energy terms that are used
in practice. Most of the commonly used approaches fall into
two broadly defined categories: 1) edge-based schemes which
use local image information (typically gradient information) [3],
[6], [9], [10], [17], [22], and 2) region-based methods, which
use global image features (e.g., statistical formulation) [8], [10],
[11], [19], [23]–[27]. Since the best choice of the energy de-
pends on the specific application at hand, we try to unify these
approaches into a single framework; we obtain a general algo-
rithm which can be tuned easily to the problem.

We propose a new edge energy term which is independent
of the parametrization, unlike most of the commonly-used en-
ergies. The use of this energy will preserve the parametrization

1A B-spline of degree zero is defined as � (x) =
1; if jxj < 0:5

0; else.
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Fig. 1. Scaling function representation of a polygon. The dotted lines in (b) indicate the corresponding linear B-spline basis functions. Note that, in this special
case, the knots are the vertices of the polygon themselves. (a) Polygon. (b) Parametric representation.

and consequently the curve stiffness. This energy is also more
robust than the traditional gradient magnitude-based energy be-
cause it accounts for the direction of the gradient as well. We
re-express this energy term as a region integral, thus unifying it
with the region-based energies in a natural way. Thanks to the
new approach, the choice of image energy is reduced to appro-
priately choosing the preprocessing.

We also clarify some earlier statements about splines by
showing that parametric snakes can implicitly ensure smooth
curves, but only if they are described in the curvilinear abscissa.
Since general curve evolution approaches do not guarantee this
configuration, we introduce a new internal energy term which
forces the snake to the constant arc-length parametrization. We
also propose efficient computational schemes for evaluating
the partial differentials of the energy terms; thanks to the
parametric curve representation in terms of finitely supported
scaling functions, we can compute the differentials exactly and
efficiently.

The paper is organized as follows. In the next section, we pro-
vide some mathematical preliminaries and formulate the para-
metric active contour problem. We deal with the image energy,
internal energy, and the external constraint energy in Sections
III, IV, and V, respectively. In Section VI, we derive efficient
expressions for the partial derivatives of the energy terms. In
Section VII, we propose a practical solution for the detection
and suppression of loops.

II. MATHEMATICAL PRELIMINARIES

A. Parametric Representation of Closed Curves

A curve in the - plane can be described in terms of an ar-
bitrary parameter as . When the curve is
closed, the function vector is periodic.

We can represent efficiently as linear combinations
of some basis functions. Here, we focus on bases derived
from the integer shifts of a scaling function2; this type of
representation includes most of the popular curve descriptors.
Particular examples are band-limited, spline and polygonal
schemes. The band-limited representation uses the sinc scaling
function and is equivalent to the Fourier representation of a

2Scaling functions are functions that satisfy a two-scale relation '(x=2) =
a(k)'(x � k), where a(k) is the two-scale mask [28].

closed curve [29]. The scaling function representation of a
curve is given by

(1)

where is the coefficient vector; they are often
termed as knot points. We illustrate the parametric description
of a polygon in terms of linear B-spline basis functions in Fig. 1.

If the period is an integer, we have . This
reduces the infinite summation to

(2)

where is the -periodization of

(3)

B. Active Contour Models: Formulation

An active contour, as introduced by Kass et al. [3], is a curve
described as an ordered collection of points which evolves from
its initial position to some boundary within the image. The curve
evolution is formulated as an energy minimization; the snake
energy is typically a linear combination of three terms:

1) the image energy, which is responsible for guiding the
snake toward the boundary of interest;
2) the internal energy, which ensures that the segmented re-
gion has smooth boundaries;
3) the constraint energy, which provides a means for the user
to interact with the snake.

The total energy of the snake is written as

(4)

where is the collection of curve coefficients
. The optimal curve parameters are ob-

tained as

(5)

It is obvious that the quality of segmentation is dependent on
the choice of the energy terms. We deal with them in detail in
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TABLE I
DIFFERENT ENERGY TERMS USED IN THE SNAKE OPTIMIZATION

the following sections and they are listed in Table I for easy
reference. The energy is minimized iteratively by updating the
snake coefficients.

III. IMAGE ENERGY

The image energy is the most important of the three energy
terms. In this section, we identify some limitations of the
widely-used gradient magnitude energy and propose a new
cost function that overcomes these problems. We also present
a unified framework which includes the edge-based and re-
gion-based approaches as particular cases.

A. Edge-Based Image Energy

Traditional snakes rely on edge maps derived from the image
to be guided to the actual contour. The most popular approach
is based on the magnitude of the gradient.

1) Gradient Magnitude Energy: Many of the parametric
snakes described in the literature use the integral of the square
of the gradient magnitude along the curve as the image energy
[6], [9], [10], [17]. Mathematically, we have

(6)

where denotes the gradient of at the point . As
pointed out in [22], one disadvantage of this measure is that it
does not use the direction of the gradient. At the boundary, the
image gradient is perpendicular to the contour. This extra infor-
mation can be incorporated into the external energy to make it
more robust.

A more fundamental problem is the dependence of on
the parametrization; we obtain a different value of if the
curve is represented in terms of a parameter , where
is a monotonically increasing one to one warping function. The
use of such an energy may therefore result in the curve re-ad-
justing its parametrization in trying to minimize (e.g.,
with B-spline curves, the knots will move to regions of the

Fig. 2. Gradient and normal to the curve.

contour where the gradient magnitude is relatively high). This
problem is demonstrated in Fig. 3(b).

2) New Gradient-Based Image Energy: The gradient mag-
nitude energy is the integral of a scalar field derived from the
gradient vector field. We propose a new energy that uses the
vector field directly

(7)

(8)

where is the unit vector orthogonal to the image plane. Here,
denotes the unit normal to the curve at . Note that this

approach of accounting for the gradient direction is similar in
philosophy to [22], even though the expression used by these
authors is different and parameter dependent.

This integration process is illustrated in Fig. 2; with our con-
vention, the vector is the inward unit normal to the curve,3

meaning that we are integrating the component of the gradient
orthogonal to the curve. Note that (7) is independent of the pa-
rameter and, hence, does not depend on the parametrization.
The improvement obtained by using the new energy instead of
the parameter dependent magnitude-based energy is shown in
Fig. 3(c).

3The vector k is chosen depending on the direction in which the curve is
described, such that n̂(r) = (dr� k=kdrk) is the inward unit normal.
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Fig. 3. Segmentation of a mouse organ using edge-based energy. (a) The knots (denoted by the white dots) are initialized so that the curve is approximately in the
curvilinear abscissa. (b) Curve evolution based on the gradient magnitude-based energy. Note that the knots accumulate at some points along the curve in the final
curve (at some locations, the knots come together to a single point), thus restricting the flexibility of the curve. (c) Curve evolution based on our new edge-based
energy; by better preserving the parametrization, it often results in a better segmentation.

3) General Edge-Based Image Energy: We consider a gen-
eralized form of (7) by substituting with other feature-en-
hancing vector fields. A promising approach is the use of op-
timal steerable filters to derive an appropriate edge enhancing
vector field [30]. This method uses filters that are more direc-
tional than the and components of the conventional gradient
operator to derive a noise-resilient field.

The general form of edge-based image energy can be ex-
pressed mathematically as

(9)

where is an appropriate vector field derived from . The mag-
nitude of gives a measure of the edge strength at , while
its direction specifies the edge orientation. We now show that
the computation of this edge-based energy is equivalent to eval-
uating a region integral.

Proposition 1: The general edge-based image energy (9) can
also be expressed as

(10)

where denotes the divergence of the vector field .
Proof: Green’s theorem relates the volume integral of the

divergence of a three-dimensional vector field over a closed
volume bounded by the surface to its integral over

(11)

The restriction of Green’s theorem to two dimensional space
yields

(12)
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The integral on the left is computed over the area bounded by
the curve while the one on the right is over . Using the vector
notation, we rewrite (12) as

(13)

where is the unit normal to the two dimensional space. Using
this identity, we simplify (9) to the form (10).

Note that in the special case when , we get
. This means that our new gradient-based energy (7) is

equivalent to integrating the Laplacian of the image in the re-
gion bounded by the curve.

B. Region-Based Image Energy

Recent research in active contours is increasingly focusing
on the use of statistical region-based image energy [11], [19],
[24], [25]. This type of energy can provide the snake with vital
boundary information, especially while it is far away from the
real contour, thus resulting in a larger basin of attraction.

The use of this energy assumes two main regions in image,4

with different probability distributions. A simple example is the
case where we have to segment a white object from a dark back-
ground; the regions will have different means and possibly dif-
ferent variances. We use the statistical formulation of Staib et
al. [10] to specify the region likelihood function

(14)

where and denote the different image regions. We denote
the regions in the curve and outside by and , respectively.
It is easy to see that (14) attains a maximum when and

. We rewrite the above integral as

(15)

where . Since does not
depend on the position of the curve, and, hence, we remove it
from the cost function. Thus, the region-based cost function is
simplified to

(16)

We now give a few examples to illustrate (16).

1) The regions and have Gaussian distributions with
the same variance. In this case, we obtain

(17)

4This can be generalized to n > 2 regions.

where are the means of the regions and and
and the standard deviation. The regions of with values
above are mapped to negative values while the ones
below are assigned positive values. Hence, evolving the con-
tour using (16) will result in the curve adjusting itself to have
regions of above inside while excluding the ones
below . The assumption of the variances of the regions
being the same is appropriate if we have piecewise constant
images corrupted by additive Gaussian noise.
2) The regions inside and outside the contour have Gaussian
distributions with different variances. In this case, we obtain

(18)

where
, and

. Here, and are the standard devia-
tions of the regions inside and outside the curve, respectively.
Since the snake uses the information from the variances as
well, it can resolve the boundaries even when both regions
have identical means but different variances [8].
In the absence of prior knowledge of the probability distri-

butions and , the statistical pa-
rameters are estimated from the image themselves as the snake
evolves; we assume the current position of the contour to define
the regions (i.e., and ) and estimate the param-
eters as discussed in Section VI-C.

The extension of this method for the segmentation of multi-
component images (e.g., color images) is straightforward. For a

-D vector image , we have

(19)

Note that the region information from the vector data is effi-
ciently concatenated into the scalar image . This frame-
work is used for the segmentation of textures in [31]. They ob-
tain an appropriate vector image from the gray level image using
a Gabor filterbank.

C. Unified Image Energy

Both of the above-mentioned energies (edge-based and re-
gion-based) have their own advantages and disadvantages. The
edge-based energy can give a good localization of the contour
near the boundaries. Unfortunately, it has a small basin of at-
traction, thus requiring a good initialization or a balloon force
[32]. On the other hand, the region-based energy have a large
basin of attraction and can converge even if explicit edges are
not present [25]. However, it does not give as good a localization
as the edge-based energy at the image boundaries. Motivated by
the complementary features of these schemes and the similarity
of (10) and (16), we propose a unified form of image energy. We
choose a convex combination of the two energies to obtain an
extended class, which inherits the advantages of both. The new
image energy is given by

(20)
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Fig. 4. Use of the unified image energy in the segmentation of a corpus-callossum image. (b) Use of the gradient based energy fails to converge in regions
where the gradient information is absent. (c) Region-based energy is misled by the lack of image contrast. (d) Unified energy leads to a good segmentation.
(a) Initialization, (b) edge only (� = 1), (c) region only (� = 0), and (d) unified (� = 0:5).

where . This unification
is similar is philosophy to the approaches in [11], [15]. How-
ever, our scheme is more natural and yields a simpler expression
since it combines the two energies into a single region integral.
The simplicity of the expression will lead to computational ad-
vantages as will be discussed later on. Note that and, hence,

is a function of the parameter . This enables us to tune
the image energy to the problem at hand. For example, the ul-
trasound images are very noisy and hence the gradient informa-
tion is unreliable. In this case, we set to use only the
region-based energy. In the case of less noisy MR images, the
best results are obtained when (see Fig. 4).

IV. INTERNAL ENERGY

The internal energy is responsible for ensuring the smooth-
ness of the contour. Kass proposed an internal energy which
is the linear combination of the length of the contour and the
integral of the square of the curvature along the contour. This
smoothness term is the most widely used one in applications
[1], [3], [5]. Its direct extension to parametric curves gives

(21)

where is the curvature of the curve at the point . The
first integral in (21) can be computed, while the second one is
more complicated. We show in the Appendix A that the second
term reduces to

(22)

provided that

(23)

that is, when the curve is parametrized by its curvilinear ab-
scissa. Here

(24)

It is justified to use as the curvature term in point-
based snakes since the snake points (snaxels) are almost equally
spaced. For parametric snakes described in the curvilinear ab-
scissa, the curvature term is inversely proportional to the fourth
power of the distance between the knots along the curve [cf.
(22) and (23)]. We will have a smooth curve if its knots are well
separated.

Most parametric schemes rely on the smoothness of the repre-
sentation, thus eliminating the need for an explicit internal en-
ergy term [6], [9]–[11], [17]. However, these approaches can
only ensure a low value of ; they can guarantee low cur-
vature curves only when (23) hold. For example, a spline curve
may be rough even with a small value of if some of
the spline knots accumulate at one section of the curve. Sim-
ilar problems exist with Fourier and other parametric represen-
tations. To counter this problem, we propose to add a new term
to the criterion that will force the snake to satisfy (23).

A. Curvilinear Reparametrization Energy

Our new energy term that penalizes the curve for not being in
the curvilinear abscissa is given by

(25)
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Fig. 5. Without the curvilinear energy, the parametric representation cannot guarantee low curvature curves. Note that, for the same initialization, the curve with
the curvilinear reparametrization energy leads to smoother curves. Without the energy, the curve knots accumulate at some regions of the curve, thus leading to
sharp corners (the corners arise from two knots that are at the same location); low energy curves are ensured only if the arc length is constant on the curve

where is given by (24). Evolving the curve with such a term
will cause the curve knots to move tangential to the curve, thus
bringing it to the curvilinear abscissa. An example of the type of
improvement that can be obtained in this way is shown in Fig. 5.

Precioso et al. [33] proposed to reparametrize the curve to
the constant arc-length representation after each step of the
optimization algorithm to avoid the curves from looping. This
scheme would yield the same results as our approach, but is
computationally much more expensive.

B. Choice of the Scaling Basis Function

As mentioned before, the parametric representations can
guarantee a small value of . Using the well-known
variational properties of splines [34], we can show that the
minimization of subject to interpolation constraints
yields a cubic spline curve with knots at the integers. Thus,
the cubic B-spline model appears to be the most natural choice
for representing parametric curves; it will yield a minimum
curvature curve provided the parametrization is the curvilinear
abscissa (i.e., the knots are uniformly spaced on the curve). The
use of spline curves also brings in additional gains due to the
existence of efficient algorithms [35], the local control of the
contour due to the finite support of the B-spline basis function
and their good approximation properties [36].

Due to these nice properties, we choose cubic spline curves
in our implementation. However, the theory we present in this
paper is general enough to accommodate for any other represen-
tation in terms of scaling function or wavelets.

C. New Internal Energy Term

In practice, the curve will almost be parametrized in the
curvilinear abscissa after a few iterations with the internal
energy term as . With this assumption, if we choose

Length in (25) instead of (24), we get

Length
(26)

This equation implies that we can also account for the Length
term in (21) by choosing . We choose to perform this
approximation since the partial derivatives of the Length term

cannot be computed exactly. We thus simplify the internal en-
ergy to

(27)

In practice, we found it better not to minimize the length of the
curve under normal circumstances; in other words, we usually
set . However, when the curve is detected to be looping,
we decrease the length of the curve by choosing . We
discuss this issue in Section VII-B.

V. EXTERNAL CONSTRAINT ENERGY

As mentioned before, external constraint energy provides a
means for the user to interact with the snake; he can guide the
snake to the boundary when image information is too weak or
ambiguous.

We introduce a point constraint mode, where the user has
the option to specify a few points that should lie on the con-
tour to be detected. We constrain the snake by adding an energy
term which is the distance between these points and the corre-
sponding closest points on the curve. The constraint energy is
given by

(28)

where are the constraints. This approach
can be thought of as introducing virtual springs that pulls the
curve toward the desired points: One end of the spring is fixed
to the constraint point while the other end slides on the curve.

VI. EVALUATION OF THE PARTIAL DERIVATIVES

In this section, we express the partial derivatives of the com-
ponent energies of the snake. These are used by the optimization
algorithm to converge to the minimum of the energy function.

The theory mentioned so far is valid for general scaling func-
tion representations ranging from band-limited curves (Fourier
series representation) to polygons. In order to derive efficient
numerical schemes, we now make the additional assumption
that the basis function is finitely supported in the interval .
Note that this class is still very rich as it includes most of the
known scaling function families. The interesting cases for our
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purpose are the cubic B-spline function, which is finitely sup-
ported in the interval , and the linear B-spline function with
the support .

1) Partial derivatives of the magnitude-based image energy.
Following the work of Flickner et al. [17], we locally opti-
mize the snake during the initialization process (when the
user is in the process of entering the initial curve), thus
providing the user with a visual feedback. For this opti-
mization, we use the simple gradient magnitude-based en-
ergy mainly because it is applicable even when the curve
is not yet closed, and also because it is simple and compu-
tationally efficient. However, we only perform few itera-
tions with this energy as it tends to bring the curve knots
closer as mentioned before (cf. Fig. 3).

We consider the integral in (6) and differentiate it with
respect to the coefficients using the chain rule [using (1)]

(29)

where . We approximate the inner-product as a
discrete sum

(30)

where is the sampling rate and stands for mod
. In the above expression, we used the finite support of

the scaling function to limit the range of the summation.
Also note that we have transferred the periodicity from the
kernel to ; this means that the summation is evaluated
assuming periodic boundary conditions on . Thus, if

and are precomputed, the evaluation
of the partial derivatives just involves a weighted sum.
The computational complexity is therefore proportional
to .

2) Partial derivatives of the unified image energy. For closed
curves, we preferentially use the unified energy to opti-
mize the curve. In line with the work of [10], [11], [37],
we now use Green’s Theorem (12) to convert region inte-
grals (over the region bounded by a closed curve) to inte-
grals over the curve; our main motivation is computational
efficiency. (20) can be efficiently computed as the curve
integral

(31)

(32)

where

(33)

(34)

Applying the chain rule of differentiation on (32), we ob-
tain as

(35)

In the last step, we expanded using (3) and made a
change of variable, thus extending the integral from to .
We also transferred the periodicity of to the coefficient se-
quence. Since is a finite sequence, the evaluation of
(35) amounts to an appropriate finite sum. In a similar manner,
using (31), we obtain

The main steps in the computation of the partial derivatives are
as follows.

1) The evaluation of the sequence
(with a change of variables we obtain

. Since is finitely
supported in the interval is zero if

). Approximating the integral as a discrete
sum, we obtain

(36)

Provided we precompute5 the sequence
, the computation of

involves an weighted sum of length .
2) The evaluation of the partial derivatives, which are ob-
tained as

(37)

5The samples of ' can be computed by solving for its values at the integers
as shown in [28] and using the two-scale relation to refine it.
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Here, the computational complexity is of the order of .
Note that there is a factor of 2 advantage in implementing the
partial derivatives of as in (37), rather than its direct eval-
uation from (7). The performance improvement in the imple-
mentation of the unified energy is even better as compared to
the one in [11], where the energy is the sum of two integrals.

A. Partial Derivatives of the Internal Energy

Differentiating the expression of and simpli-
fying further, we obtain the partial derivatives as a simple mul-
tidimensional filtering of the scaling function coefficients. We
show in the Appendix that the partial derivatives of the the term

can be computed as

(38)

where

(39)

(40)

Note that the multidimensional filtering is performed assuming
periodic boundary conditions. The computational complexity is
small, since the sum depends only on the coefficient sequence
whose number is typically much less than the number of curve
samples. The computational complexity in evaluating the above
sum is . The filter coefficients (39) and (40) are precom-
puted as shown in Appendix C.

B. Partial Derivatives of the Constraint Energy

Computing the partial derivatives of (28), in all its gener-
ality, would give a very complicated expression. To make the
problem more tractable and to reduce its computational com-
plexity, we make the assumption that the optimal parameters

are known. In this case, (28) gets simplified
to

(41)

and its partial derivatives are given by

(42)

Using the finite support of the scaling functions, we limit the
sum to the relevant indices (we need to evaluate it only for

). In practice, we resort to a two-step
optimization where the snake is first evolved using the above
formulas for the derivatives with the current set of s. The op-
timal parameters are then re-estimated within the loop as

(43)

C. Estimation of the Probability Distribution Functions

The evaluation of (14) requires the specification of
the probability distribution functions and

. If we do not have any a priori knowledge
of these distributions, these are estimated iteratively from the
image data itself assuming and . Note that these
assumptions are valid if the snake is close to the real boundary.
We use densities such as the Gaussian distribution which are
represented by a few parameters (mean and variance). The
estimation of these parameters require integrating the image
and its square in the region bounded by . We compute the in-
tegrals efficiently using (31) with the corresponding integrated
functions [similar to (33)] precomputed.

The estimation of the distributions are followed by a non-
linear transformation which maps into . Since this trans-
formation is time consuming, the estimation of the distributions
and the updating of is only performed periodically, typically
once every ten iterations.

D. Computation of the Length and Area

The computation of the internal energy requires the
estimation of the current length of the curve. We com-
pute the length as a discrete approximation of the integral

as

Length (44)

The area of the curve is obtained by Green’s theorem as ,
which when expanded gives

Area (45)

where is obtained as in [38].
Note that the area obtained by the above expression is signed;
its sign is utilized to determine the direction (clockwise or anti-
clockwise) of the curve.
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Fig. 6. Computation of the elemental angle.

VII. EVOLVING THE CURVE

A. Optimization Algorithm

As mentioned before, the active contour algorithm extracts
the final contour by finding the minimum of the energy function.
Having obtained the partial derivatives, we can use an efficient
optimization algorithm to evolve the contour. Here, we imple-
mented the conjugate gradient and steepest descend algorithms.
The conjugate gradient algorithm resulted in slightly faster con-
vergence, but was less flexible for loop recovery and knot ad-
dition/deletion discussed later. Hence, in our final implemen-
tation, we reverted to the simpler steepest descend algorithm,
which was found to be entirely satisfactory for our purpose.

B. Loop Detection and Recovery

The optimization process can sometimes lead to looping
curves. The probability of loops is greatly reduced by the intro-
duction of the curvilinear reparameterization energy; without
this term, the knots tend to bunch together, eventually resulting
in loops (cf. Fig. 5).

Despite the use of the new internal energy, looping may still
arise occasionally6 when the image energy forces some knots
to move faster than the others. This compromises our approach
since we use Green’s theorem which assumes simply connected
regions. In the case of polygonal representation (linear spline
curve), Chesnaud et al. proposed to perform crossing tests to
detect the presence of loops [24]. Unfortunately, this method is
time consuming and not directly applicable to general scaling
function curves. Hence, we devised a fast method for loop de-
tection. We compute the total tangential angle (Fig. 6)7

(46)

where

(47)

We show in Appendix D that the value of the integral (46) is
, where and are the number of loops in the

clockwise and anticlockwise direction, respectively. Hence, for
a simply connected curve, we expect (depending on the di-
rection in which the curve is described). We approximate (46)
by a discrete sum over the parameter .

6In our experiments, looping arise in about 10% of the cases.
7For a plane curve, the tangential angle � is defined by d� = �jdrj [39].

Note that our criterion can give a value , even if the curve
is looping (when ), which implies that it is not com-
pletely foolproof. In principle, it is possible to detect these cases
by splitting the integral (46) over a series of smaller intervals and
checking if there is a loop in each of the subintervals. However,
such cases are unlikely to occur in practice and it was not nec-
essary to implement such a finer level of detection.

Once we detect a loop, we evolve the curve with only the
term with , thus decreasing its length. In practice, the
curvature of the curve at the loops are high. Since minimizing
the length corresponds to evolving the curve at every point de-
pending on its curvature [14], the loops tend to disappear very
rapidly. This scheme may result in regions of the contour with
high curvature getting smoothed out during the loop-elimina-
tion process. However, in most cases, the image energy guides
the contour back to the edges once the loops are eliminated.

C. Shrinking/Growing Snakes

If the snake is initialized away from the actual boundary, it
has to shrink/grow to reach the boundary. This changes the av-
erage spacing of the knots, which in turn controls the average
curvature of the curve [cf. (22)].

We monitor the length of the curve as it evolves in order to
eventually add/delete knots as required. If the average length per
knot is greater than the desired value (set by the user), a knot is
added to the curve. The distances between the knots are evalu-
ated and a knot is added at the longest interval. Similarly, a knot
is deleted if the length per knot is less than the user set value. In
this case, the knot whose sum of the distances to its neighbors
is the shortest is deleted. The addition/deletion of knots tem-
porarily destroys the uniform spacing of knots. But, thanks to
the reparametrization energy term, it returns to the curvilinear
abscissa in a few iterations (without the reparametrization en-
ergy, knot insertion is a tricky issue as close knots may eventu-
ally lead to looping curves). The performance improvement in
adopting this strategy is illustrated in Fig. 7.

VIII. DISCUSSION AND CONCLUSION

We have successfully applied the snake algorithm to a variety
of cases including the segmentation of corpus-callossum from
MR images and segmentation of the inner heart wall from ultra-
sound data. Some examples of the segmented corpus-callossum
images are shown in Fig. 8. Thanks to the unified image energy,
the snake gives a good segmentation even if it is not initialized
very close to the actual boundary. This approach also makes the
algorithm less sensitive to the initial shape of the snake.

The curvilinear reparametrization energy ensures that the
curves are smooth. Without this term, the segmentation of the
heart data (see from Fig. 7) is impossible; the curves often
resulted in loops. The knot insertion/deletion procedure ensures
that the evolving curve has the same stiffness as the initializa-
tion.

To conclude, we have presented several enhancements over
classical parametric snakes. We have identified some limitations
of the conventional gradient magnitude image energy and pro-
posed a new energy that eliminates these problems. We have
shown that a general form of this energy can be expressed as a
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Fig. 7. Segmentation of the inner wall of the heart of a dog from its ultrasound image. Only the region-based energy is used in this case (� = 0). Note that knot
(knots are denoted by black dots) insertion and loopcheck is indispensable in this case. Time taken for (c): 3.2 s on a 667-MHz Macintosh G4. (a) Initialization,
(b) without knot insertion, and (c) with knot insertion.

Fig. 8. Segmentation of corpus-callossum of four different subjects from their MR images. The initialization was a small curve at the center similar to Fig. 4. We
gave equal weight to the region and gradient terms (� = 0:5). Average time taken: 1.9 s on a 667-MHz Macintosh G4.

region integral, thus unifying it naturally with the region-based
approaches. The unification yields a powerful class of image en-
ergies that combines the advantages of edge and region-based
approaches. We have shown that the spline representation can
guarantee smooth curves if these are described in the curvilinear
abscissa. Since the curve evolution process can negatively affect
the reparametrization of the curve, we proposed a new internal
energy which forces the knot points to remain equally spaced.

The various energy terms that we have proposed are summa-
rized in Table I.

The evolution of the curve may lead to looping curves that
violate our assumption of the region to be simply connected.
Hence, we introduced a simple loop detection test. We also
proposed an efficient curve evolution-based algorithm for re-
covery from the loops. We introduced efficient computational
schemes for the evaluation of the partial differentials used in the



1242 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 13, NO. 9, SEPTEMBER 2004

optimization; we converted all the quantities as curve integrals
and simplified the expressions making use of the properties of
scaling function curve representation.

The implementation of this algorithm is available as a java
plugin for ImageJ [40] at http://bigwww.epfl.ch/jacob/soft-
ware/SplineSnake.

APPENDIX A
SIMPLIFICATION OF THE CURVATURE

TERM IN THE INTERNAL ENERGY

The square of the curvature of the curve at a point can be
expressed in the vector form as

(48)

Assuming the parameter to be in the curvilinear abscissa, we
have . Making use of the vector identity

, the numerator of (48) can be rewritten as

In the second step, we make use of the identity
. So, the expression for the curvature can be

written as

(49)

APPENDIX B
PARTIAL DERIVATIVES OF THE CURVILINEAR

REPARAMETRIZATION TERM

Expanding (25), we obtain

(50)

Differentiating with respect to , we get

(51)

Now, substituting for and from (1), yields

(52)

The filters and are given by

(53)

(54)

With a change of variables and using the finite support of and
, we can simplify (52) to (38).

APPENDIX C
PRECOMPUTATION OF THE KERNEL

We use the property that the derivative of a scaling function
can be written as , where is
the scaling function whose mask (scaling filter) is

is the mask of . Using this
relation, we rewrite the filter coefficients (39) and (40) as

(55)

(56)

where

and

(57)

(58)

The scaling function satisfies the twoscale relation

(59)

Consequently, the kernels and satisfy the two-scale rela-
tions

(60)

(61)

where the two-scale masks and are given by

(62)

(63)
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Using the two-scale relation, the sequences and are exactly
computed as in [38].

APPENDIX D
INTEGRAL OF THE TANGENTIAL ANGLE

We start by observing that the integral (46) can be expressed
as

Im (64)

where Im gives the imaginary part of and . This
can be rewritten as the curve integral

(65)

where is the curve described and .
Using Cauchy’s integral formula, we obtain the value of this
integral as times the winding number8 of the contour about
the origin. Since each loop in corresponds to one in in the
same direction, but around the origin, the winding number of
is , where and are the number of times loops in
the anticlockwise and clockwise direction, respectively.
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