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Abstract: We present an image reconstruction method for diffuse optical
tomography (DOT) by using the sparsity regularization and expectation-
maximization (EM) algorithm. Typical image reconstruction approaches in
DOT employ Tikhonov-type regularization, which imposes restrictions on
the L2 norm of the optical properties (absorption/scattering coefficients). It
tends to cause a blurring effect in the reconstructed image and works best
when the unknown parameters follow a Gaussian distribution. In reality, the
abnormality is often localized in space. Therefore, the vector corresponding
to the change of the optical properties compared with the background would
be sparse with only a few elements being nonzero. To incorporate this
information and improve the performance, we propose an image reconstruc-
tion method by regularizing the L1 norm of the unknown parameters and
solve it iteratively using the expectation-maximization algorithm. We verify
our method using simulated 3D examples and compare the reconstruction
performance of our approach with the level-set algorithm, Tikhonov
regularization, and simultaneous iterative reconstruction technique (SIRT).
Numerical results show that our method provides better resolution than the
Tikhonov-type regularization and is also efficient in estimating two closely
spaced abnormalities.
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1. Introduction

Diffuse optical tomography (DOT) is a non-invasive functional imaging modality whose goal is
to estimate the optical properties of human tissue. It provides useful physiological information
about blood volume and oxygenation and has applications in optical mammography [1, 2] and
functional brain imaging [3, 4].
The forward problem in DOT describes the photon propagation in tissue and the inverse prob-

lem involves estimating the absorption and scattering coefficients of tissue from light measure-
ments on the surface. The inverse problem is ill posed and highly underdetermined, and thus
regularization is typically required through which certain prior assumptions on the solution
(e.g., an assumption on its smoothness or a bound on its norm) can be imposed. The most
common choice is the Tikhonov-type regularization [5, 6, 7], where the least-square residual
is regularized using the L2 norm of the unknown parameters. This adjustment aims to reduce
high-frequency noise in the reconstructed images; however, it tends to produce an over-smooth
solution and performs best when the real solution assumes a Gaussian distribution. Different
methods have been developed to overcome these drawbacks. Paulsen and Jiang proposed a
non-linear regularization method that minimizes the total-variation norm [8]. The anisotropic
diffusion regularization was applied in [9, 10], which provides better performance in preserv-
ing geometrical structures such as edges or corners and can readily incorporate prior structural
information from other imaging modalities. Pogue et al. employed spatially variant regulariza-
tion parameters to compensate for the spatial dependence of the contrast and resolution in the
reconstruction [6], and several shape-based approaches were proposed in [11, 12] with their
performances analyzed using the Cramér-Rao bound [13].
In this paper, we propose an alternative method to improve the spatial resolution of the re-

constructed images in DOT. Our method is based on the observation that abnormalities in the
domain (e.g., tumors in the breast or activations in the brain) are typically spatially concentrated
and thus sparse. Therefore, it would be helpful to incorporate such information in solving the
inverse problem. In recent years, the topic of sparse signal representation and estimation has
developed in a variety of applications, including image reconstruction and restoration [14],
feature selection and classification in machine learning [15, 16], radar signal processing and
imaging [17, 18], and biomedical imaging [19, 20, 21, 22, 23, 24]. It was also commonly
known as LASSO (Least Absolute Shrinkage and Selection Operator) in the field of regression
[25]. In [15], the authors used a Laplacian prior to enforce sparsity and interpreted it using a
hierarchical Bayesian method. In [19], a re-weighted minimum norm algorithm called FOCal
Underdetermined System Solver (FOCUSS) was proposed, whereby a low resolution estimate
of the sparse signal was first obtained and then pruned to a sparse signal representation. Dif-
ferent level-set algorithms were developed to incorporate the sparse nature of the activations in
DOT and consider both the support and values of the activated regions [23, 24].
We propose imposing the sparseness of the optical abnormality using the L1 norm regular-

ization and solving it using the expectation-maximization (EM) algorithm. The EM algorithm
was originally formulated to obtain the maximum likelihood estimation with missing data. In
our case, we reformulate the measurement model in such a way that we first consider the real
absorption perturbation as a “clean” perturbation corrupted by white Gaussian noise, regard it
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as a type of missing data, and then estimate the pure perturbation iteratively using the EM algo-
rithm. In particular, we apply a soft-thresholding approach in the maximization step to simplify
the computation. We validate our method using 3D simulated examples where the scattering
coefficients are assumed to be spatially constant and known and we recover only the absorption
coefficient. We compare our approach with standard methods, including the Tikhonov regu-
larization and simultaneous iterative reconstruction technique (SIRT) [26, 27], as well as a
level-set algorithm [23]. The level-set method represents the support of the abnormality using
a level-set scheme and makes the inverse problem well-posed by exploiting the spatially con-
centrated nature of the abnormality. We show that our method provides better resolution than
the standard Tikhonov-type regularization and is efficient in estimating two closely-spaced ab-
normalities.
This paper is organized as follows: In Section 2 we briefly review the forward and measure-

ment models in DOT. In Section 3, we propose the image reconstruction method using sparse
regularization and provide the solution using the EM algorithm. Numerical examples are given
in Section 4, where we present our reconstruction results and compare the performance with
other methods. Finally, we offer conclusions in Section 5.

2. Forward and measurement models

Photon propagation in human tissue is mathematically described by the Boltzmann transport
equation. It can be simplified under certain assumptions using the diffusion approximation (DA)
equation, which can be solved using the finite element method (FEM) [28, 29], finite difference
method (FDM) [30], and Born or Rytov approximations [26]. In this paper, we employ the
Rytov solution to DA, where the scattered field is assumed to be slowly varying in space.
Furthermore, we assume that the scattering coefficient µs is spatially constant and known, and
we focus solely on the reconstruction of the absorption coefficient µa.
Denote Ns the number of light sources, Nd the number of detectors, and Nm = Ns×Nd the

number of measurements. Assuming that the domain is divided into N voxels with a constant
absorption coefficient µai in the ith voxel, the Rytov solution to DA is expressed as [26]

φ c = Acµ , (1)

where the superscript “c” denotes complex values, φ c ∈ CNm the Rytov phase, Ac ∈ CNm×N the
weighting matrix, and µ ∈ RN the change of µa in each voxel compared with the background.
More specifically, we can write µ = [δµa1,δµa2, . . . ,δµaN ]T , where δµai = µai− µa0 with µa0
denoting the homogeneous background absorption coefficient. Note that Eq. (1) can be used for
different simple geometries such as infinite, semi-infinite, or slab, by modifying the elements in
Ac using the method of image sources [31] and extrapolated zero boundary conditions [32, 33].
It can also be easily extended to consider multiple frequencies.
Separating the real and imaginary parts of φ c and Ac and letting φ = [Rφ cT ,I φ cT ]T and

A= [RAcT ,I AcT ]T , the complex Eq. (1) can be rewritten as a real equation:

φ = Aµ , (2)

with φ ∈ RNtot , A ∈ RNtot×N , and Ntot = 2×Nm. Assuming additive Gaussian noise e, the
measurement model is given as

y= Aµ+ e, (3)
where y ∈ RNtot denotes the measurement vector. In this paper, we assume e to be zero-mean
and spatially uncorrelated with a covariance matrix σ2I. Namely,

e∼ N (0,σ2I), (4)

whereN (ν,Σ) denotes a Gaussian distribution with mean ν and covariance matrix Σ.
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3. Inverse problem and expectation-maximization algorithm

In this section, we first present the inverse problem and interpret it from a regularization per-
spective. We then introduce the concept of sparsity regularization and formulate the inverse
problem using the L1 norm of the unknown vector µ . We propose solving the optimization
problem using the EM algorithm and give the solution in the end.

3.1. Inverse problem from a regularization perspective

The inverse problem in DOT involves estimating µ from the measurements y. The problem
is ill posed and highly underdetermined since N is typically much larger than Ntot. To solve
this problem, regularization is usually required, where additional information is introduced
about the solution to µ (e.g., an assumption on its smoothness or a bound on its norm). Using
regularization, the inverse solution is formulated as

µ̂ = argmax
µ

{−||y−Aµ||2− γg(µ)}, (5)

where the first term in brackets denotes the least-square error, g(µ) the regularization function,
and γ the regularization parameter controlling the tradeoff between the noise residual and the
prior. In the Tikhonov regularization,

g(µ) = ||µ ||22 =∑
i
µ2i , (6)

which assumes that the solution µ is smooth over the domain. The corresponding solution is
given as

µ̂ = (ATA+ γI)#ATy, (7)
where I denotes the identity matrix and A# the pseudo-inverse of A. It can be solved either
directly or iteratively using, for example, the conjugate gradient (CG) method.
Equation (5) can also be interpreted from a Bayesian point of view. If we assume that the

measurements y are corrupted by Gaussian noise and µ is normally distributed with a zero
mean, Eq. (5) is equivalently expressed as

µ̂ = argmax
µ

{ln p(y|µ)+ γ ln p(µ)}, (8)

where p(y|µ) denotes the likelihood function with ln p(y|µ)∝−||y−Aµ||2 and p(µ) the prior
distribution with ln p(µ) ∝ −||µ||22. Therefore, the solution using the Tikhonov regularization
is equivalent to the Bayesian solution assuming a Gaussian prior on µ .

3.2. Introduction of the sparsity regularization

Note that in the image reconstruction of DOT, the distribution of µ (i.e., the change of the
absorption coefficient) is not necessarily Gaussian in 3D. In particular, it appears in a sparse
format where most of its elements are zeros (corresponding to the unchanged background),
and only a few of them are nonzero (corresponding to the abnormalities). Based on this fact,
we propose incorporating this sparseness prior into the image regularization formulation to
improve the reconstructed resolution.
The ideal measure of the sparseness of a vector x is its L0 norm: ||x||0, which is the number

of non-zero entries in x. However, the minimization/maximization involving ||x||0 is NP-hard
(Nondeterministic Polynomial-time hard) and can be solved only using a combinatorial opti-
mization approach. Instead, it is usual to use the L1 norm ||x||1 as an approximated measure,
where

||x||1 =∑
i
|xi|. (9)
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It has been shown that if the solution µ is sparse enough, the solution to the L1 norm minimiza-
tion is equivalent to minimizing the L0 norm [34].
Under the measurement model (3) and the sparsity assumption on µ , our inverse problem is

expressed as
min ||µ ||1 subject to ||y−Aµ|| ≤ ξ 2, (10)

where ξ 2 is a parameter on the noise level. It can be equivalently expressed in an unconstrained
form as

µ̂ = argmax
µ

{−||y−Aµ||22− γ||µ||1}. (11)

Equation (11) is a convex problem but it is non-differentiable. It can be solved using lin-
ear or quadratic programming, but in this paper we propose solving it using the expectation-
maximization (EM) algorithm. By decomposing measurement model (3), the EMmethod takes
advantage of certain structures and results in computationally simple solutions.

3.3. Equivalent model and EM algorithm

We propose solving the optimization problem in (11) using the EM algorithm. The EM algo-
rithm is a general method to obtain the maximum penalized log-likelihood estimator (MPLE)
by introducingmissing data and maximizing the complete penalized log-likelihood. In our case,
the MPLE is expressed as

µ̂ = argmax
µ

{log p(y|µ)− γ||µ||1} (12)

= argmax
µ

{−
||y−Aµ||22
2σ2

− γ||µ||1}, (13)

which provides the same solution as (11). To apply EM, we first reformulate the measurement
model (3) so that

{

x= µ+αe1,
y= Ax+ e2,

(14)

where α is a positive constant. This reformulation is equivalent to expressing

e= αAe1+ e2, (15)

where e1 and e2 are independent, such that

e1 ∼ N (0, I), (16)
e2 ∼ N (0,σ2I−α2AAT ). (17)

Note that in order for the matrix σ2I −α2AAT to be positive definite (so that it is a valid
covariance matrix), we must have

α2 ≤ σ2/β1, (18)

where β1 denotes the largest eigenvalue of AAT .
The decomposition in (14) introduces a hidden variable x, which is the noisy version of the

true absorption perturbation µ . By regarding x as the missing data, we can estimate the real µ
using the EM algorithm. The EM algorithm produce a sequence of estimates µ̂ (k),k = 1,2, . . .
by alternating two steps (see below) until some stopping criterion is met.
(1) E-step: Compute the conditional expectation of the complete log-likelihood (of y and x)

given the observed data y and the current estimate µ̂ (k). Namely, compute

Q(µ , µ̂ (k)) = E
[

log p(y,x|µ)|y, µ̂ (k)
]

. (19)
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In this particular case, we can show that it is equivalent to computing

x̂(k) = µ̂ (k) +
α2

σ2
AT (y−Aµ̂(k)). (20)

See Appendix A for a detailed derivation.
(2) M-step: Update the estimated µ̂(k) according to

µ̂ (k+1) = argmax
µ

{

Q(µ , µ̂ (k))−g(µ)
}

, (21)

which in our case can be expressed as

µ̂(k+1) = argmax
µ

{

−
||µ− x̂(k)||2

2α2
− γ||µ||1

}

= argmax
µ

{

−||µ− x̂(k)||2−2α2γ||µ ||1
}

. (22)

Equation (22) can be solved separately for each element µ̂ (k+1)
i , i= 1, . . . ,N, as

µ̂ (k+1)
i = argmax

µi

{

−µ2i +2µixi−2α2γ|µi|
}

, (23)

where xi denotes the ith element of x. According to [15, 35], (23) can be solved using a soft-
threshold method [15]:

µ̂ (k+1)
i = sgn(x̂(k)i )(|x̂(k)i |− γα2)+, (24)

where (·)+ denotes the positive part operator defined as (x)+ = max{x,0}, and sgn(·) is the
sign function defined as sgn(x) = 1 if x> 0, and sgn(x) = −1 if x< 0.

3.4. Some comments

A few comments deserve mention here regarding the aforementioned image reconstruction
algorithm.

3.4.1. On the model (14)

By introducing the hidden variable x, we decompose the inverse problem (the mapping of y→
µ) into two parts: The first part can be interpreted from the typical image reconstruction point of
view, which removes the effects of measurement noise (i.e., the mapping of y→ x); the second
part can be regarded as a denoising procedure (the mapping of x→ µ). This formulation can
help improve the resolution of the reconstructed images, as we will show in Section 4.

3.4.2. On the convergence of the EM algorithm

Based on the information matrices, it has been shown in [36] that each iteration of EM is
guaranteed to increase the penalized log-likelihood function, namely,

− log p(y|µ̂ (k+1))− γ||µ(k+1)||1 ≥− log p(y|µ̂ (k))− γ||µ(k)||1. (25)

However, it does not mean that the sequence will converge to the maximum likelihood estimator
of µ . If the distribution is multimodal, Wu showed in [37] that the EM algorithm is guaranteed
to converge to a stationary point (i.e., the local maximum or saddle point) provided that the Q
function and the penalty term are continuous in both µ and µ̂ . The convergence performance
also depends highly on the choice of the starting value µ(1). To escape from the stationary point,
we can use several different random initial points and also incorporate the prior information
regarding the abnormality distribution.
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3.4.3. On the soft-threshold method

In the M-step, we employed the soft-threshold method to implement the maximization. This
approach is commonly used in the wavelet denoising scenario for image processing [15, 38,
39, 40], where the goal is to solve the problem of argminx ||y−Ax||22+ γ||x||1 with A being
orthogonal and x sparse. Certainly, other algorithms, such as the subgradient method and the
interior-point method can also be used to solve (23), but we choose the thresholding algorithm
for the sake of simplicity. From (20) and (24), we can see that our method has a computational
complexity of O(N2) for the update in the E-step and O(N) in the M-step.

3.4.4. On the choice of the parameters

We need to consider the following issues when determining the model parameters: (1) the
convergence rate of the EM algorithm and (2) the effect of the sparsity regularization. The first
factor is affected by α . According to the theory of the convergence rate of EM [36], α should
be made as large as possible for a faster convergence. In our case, since we need to satisfy the
condition α2 ≤ σ2/β1 (see Subsection 3.3) for the validity of the EM model (14), we should
choose α to be as close to σ/

√

β1 as possible.
The effect of the sparsity regularization is controlled by α , γ , and σ as shown in Eqs. (13)

and (22). Once σ is given and α selected based on (18), it is obvious that the higher the γ ,
the sparser the reconstructed image. According to the first-order optimality condition in the
convex optimization, Kim et al. showed in [41] that for the general problem of argminx ||Ax−
y||22 + γ||x||1, an upper bound on the useful range of γ is given as (γ)max = ||2ATy||∞, where
||x||∞ =maxi{xi}. For γ that is higher than (γ)max, the estimated x̂ would have all its elements
be zero. After applying this result to Eqs. (13) and (22), we derive that σ , γ , and α should
satisfy the following equations:

α2γ ≤ (α2γ)max = ||x||∞, (26)
σ2γ ≤ (σ2γ)max = ||ATy||∞. (27)

Note that Eqs. (26) and (27) provide only an upper bound on the model parameters. Their
main function is to avoid selecting a γ that is too large for obtaining a meaningful result. The
right-hand side of Eq. (27) can be easily computed once the model is determined. Regarding the
right-hand side of Eq. (26), although x denotes the noisy version of the true perturbation µ, its
maximum can be estimated given certain prior information. For example, according to [26], the
perturbation in the abnormality’s absorption value ranges from 0.02 cm−1 to 0.3 cm−1 for most
biological tissue, depending on the tissue type. Based on this information, we would be able to
obtain a reasonable estimate of the bound on α2γ . In practice, we first determine the range of
α , γ , and σ based on Eqs. (18), (26), and (27) and then select their values experimentally based
on the signal-to-noise ratio to obtain the optimal reconstruction results.

4. Numerical examples

In this section, we provide numerical examples to illustrate the reconstruction results using our
sparsity regularization and compare it with other methods. We considered a 3D transmission
geometry as shown in Fig. 1, where the origin is at the center of the bottom surface (z= 0 cm)
and the sides are of length 8 cm, 8 cm, and 6 cm along the x, y, and z directions, respectively.
We placed 25 sources on the bottom surface at 1.75 cm intervals and 25 detectors on the top
surface (z = 6 cm) at 1.5 cm intervals. We chose a source modulation frequency of 200 MHz
and wavelength λ = 750 nm.
We chose the background optical parameters as µa0 = 0.05 cm−1, µ ′

s0 = 9.5 cm−1, and the
speed of light c= 22 cm/ns [42]. We divided the domain into small voxels with size 4×4×5
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Fig. 1. Simulation setup. The domain is composed of an 8×8×6 cm3 cube, where twenty-
five sources (circles) are placed on the bottom surface (z= 0 cm) and twenty-five detectors
(black dots) on the top (z= 6 cm). The range along the x and y axes is [−4,4] cm.

mm3 and set up the forward model (2) using the method of image sources with the extrapo-
lated zero boundary condition. We added Gaussian noise with standard deviation σ = 0.01 and
performed image reconstruction using four methods: (a) our L1-EM approach, (b) the level-set
algorithm proposed in [23], (c) the Tikhonov regularization, and (d) the simultaneous iterative
reconstruction technique (SIRT). In the following, we first demonstrate the reconstruction re-
sults of four methods assuming one absorbing abnormality and then discuss their performances
in separating two closely spaced abnormalities.

4.1. Image reconstruction results

We assumed that there is one spherical absorption abnormality centered at [−1.5, 1.25, 2.9] cm
with radius R = 1 cm and absorption perturbation δµa = 0.2 cm−1. The abnormality covers
54 voxels out of a total of 4,800 voxels in the domain. The original µa distribution is shown
in Fig. 2, where each small image shows the cross-section layer at different z values at 0.5 cm
intervals.
For our L1-EM approach, we selected α = 3.5×10−4, γ = 104, and stopped the EM iteration

when |µ̂ (k+1) − µ̂ (k)| ≤ 10−3. Under the current setup, the solution converges after 400 itera-
tions, taking about 45 seconds using Matlab 7 on a PC with Pentium 4 2.6 GHz CPU and 1 G
of RAM. For the level-set algorithm, we used κ = 0.4, λ = 0, µ = 2× 10−4, and stopped the
iteration when the relative change e(k) is less than 10−8; see [23] for the notation and imple-
mentation. We selected γ = 0.05 for the Tikhonov regularization (see Eq. (7)) and terminated
the SIRT after 800 iterations.
The results are shown in Fig. 3. We can see that all of the four methods can recover the

center location of the abnormality correctly. However, clear differences in performance can
also be observed. More specifically,

• Due to the incorporation of the sparse nature of µ , our method and the level-set algorithm
provide the best performance in terms of resolution. We observe the least amount of
background noise and biggest contrast between the activation and background in Figs. 3a
and b. The level-set algorithm overestimates the size a little bit and the L1-EM approach
appears to have a “spiky” effect due to the nature of the L1 norm.
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Fig. 2. Original δµa distribution in cm−1, assuming only one absorbing abnormality. Small
images show the cross-section layers at different z values at 0.5 cm intervals.

• The result using the Tikhonov regularization is blurred and appears as a Gaussian dis-
tribution due to the effect of the L2 norm; see Fig. 3c. There is also more background
noise.

• The SIRT introduces the biggest side-lobe in the reconstructed results. Furthermore, the
reconstructed values are biased, with a zero initial vector.

From the above example, we can see that our method can provide image reconstruction result
with fairly good resolution. Combined with other methods using Tikhonov regularization, it can
be useful in determining the range of the activation with more accuracy.

4.2. Performance analysis

In this subsection, we study the performance of our method for separating two closely spaced
absorbing abnormalities. We assumed two spherical absorptive abnormalities with radius R =
0.75 cm and δµa = 0.2 cm−1. We considered the following two cases: In the first case, the
centers of these two spheres are at [−1.5, 0.8, 2] cm and [1.5, −0.8, 4] cm, with a distance
of 4 cm between the two centers and 2.5 cm between the two closest points on the spheres.
In the second case, the centers are moved to [−1, 0.5, 2.5] cm and [1, −0.5, 3.5] cm, and the
distance becomes 2.45 cm between centers and 1 cm between the closest points. The original
δµa distributions are shown in Fig. 4.
The reconstruction results are shown in Fig. 5 and Fig. 6, respectively.We can see that for the

first case, all four methods can separate the two abnormalities with different levels of accuracy.
In a similar fashion as the results shown in Fig. 3, the L1-EM method and level-set algorithm
reconstruct the problem with the best resolution, and the Tikhonov regularization and SIRT
method show wider side lobes than the true distribution. When the two abnormalities get closer,
the difference in the reconstruction performance becomes more obvious. We can tell that the
SIRT method fails to differentiate the two abnormalities: There is only one big sphere showing
around the midpoint along the two abnormalities. Both the L1-EM and level-set algorithm can
separate the abnormalities well. However, the level-set algorithm underestimates the size in this
case. This might be due to the small size of the activations, leading to a poor approximation
of curve evolution; the discretization of the problem on a finer grid may yield better estimates.
The result using the Tikhonov regularization again shows bigger side lobes.
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Fig. 3. Reconstructed δµa distributions in cm−1, assuming only one absorbing abnormality
as shown in Fig. 2. (a) Using the sparse regularization with EM algorithm; (b) using the
level-set algorithm; (c) using the Tikhonov regularization; (d) using SIRT. Small images
show the cross-section layers at different z values at 0.5 cm intervals.
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Fig. 4. Original δµa distributions in cm−1, assuming two spherical absorptive abnormali-
ties.
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Fig. 5. Reconstructed δµa distributions in cm−1, assuming two spherical absorptive abnor-
malities as shown in Fig. 4(a). (a) Using the sparse regularization with EM algorithm; (b)
using the level-set algorithm; (c) using the Tikhonov regularization; (d) using SIRT.

5. Conclusions

We proposed an image reconstructionmethod for diffuse optical tomography by introducing the
sparsity regularization. We formulated the inverse problem by regularizing the L1 norm of the
unknown absorption coefficients and solved the optimization problem using the expectation-
maximization (EM) method with a soft-threshold approach. We compared our method with
other image reconstruction approaches and showed its efficiency in improving the reconstruc-
tion resolution.
In the current work, we applied our method to a transmission geometry, using the forward

model based on the Rytov approximation to the diffuse approximation equation. This frame-
work is useful for breast tumor detection. Our future work includes applying the proposed
methods to the FEM forward model with a spherical domain shape and testing it using the real
optical measurements from brain imaging. In order to apply our method to a nonlinear forward
solver like FEM, a linearized model using the Taylor series needs to be obtained first for the
applicability of the decomposition (14). More details on model linearization and computation
of the Jacobian matrix for the FEM model can be found in [28, 29].
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Fig. 6. Reconstructed δµa distributions in cm−1, assuming two spherical absorptive abnor-
malities as shown in Fig. 4(b). (a) Using the sparse regularization with EM algorithm; (b)
using the level-set algorithm; (c) using the Tikhonov regularization; (d) using SIRT.

Appendix A

In this appendix, we derive the E-step given in Section 3.3. The complete likelihood function is
expressed as

p(y,x|µ) = p(y|x,µ)p(x|µ) = p(y|x)p(x|µ), (28)
where the second equality follows because y is independent of µ when conditioned on x. Then
we have

log p(y,x|µ) = −
||x− µ||2

2α2
+C1 (29)

= −
µTµ−2µT x

2α2
+C2, (30)

where C1 andC2 are constants that do not depend on µ . Comparing (29) with (19), we can see
that the E-step is equivalent to computing the conditional expectation of x given the observed
data y and current estimated parameter µ̂ (k), i.e., computing

x̂(k) = E
[

x|y, µ̂ (k)
]

=
∫

xp(x|y, µ̂ (k))dx. (31)

Since

y|x ∼ N (Ax,σ2I−α2AAT ), (32)
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x|µ̂ (k) ∼ N (µ̂ (k),α2I), (33)

and

p(x|y, µ̂ (k)) =
p(y|x)p(x|µ(k))

p(y|µ (k))
∝ p(y|x)p(x|µ (k)), (34)

it can be shown that x|y, µ̂ (k) is also Gaussian with its mean given by

x̂(k) = µ̂ (k) +
α2

σ2
AT (y−Aµ̂(k)). (35)
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