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Optimized Least-Square Nonuniform
Fast Fourier Transform

Mathews Jacob, Member, IEEE

Abstract—The main focus of this paper is to derive a memory
efficient approximation to the nonuniform Fourier transform of a
support limited sequence. We show that the standard nonuniform
fast Fourier transform (NUFFT) scheme is a shift invariant ap-
proximation of the exact Fourier transform. Based on the theory
of shift-invariant representations, we derive an exact expression
for the worst-case mean square approximation error. Using this
metric, we evaluate the optimal scale-factors and the interpolator
that provides the least approximation error. We also derive the
upper-bound for the error component due to the lookup table
based evaluation of the interpolator; we use this metric to ensure
that this component is not the dominant one. Theoretical and
experimental comparisons with standard NUFFT schemes clearly
demonstrate the significant improvement in accuracy over con-
ventional schemes, especially when the size of the uniform fast
Fourier transform (FFT) is small. Since the memory requirement
of the algorithm is dependent on the size of the uniform FFT, the
proposed developments can lead to iterative signal reconstruction
algorithms with significantly lower memory demands.

Index Terms—Fourier transform, interpolation, nonuniform,
sampling, shift-invariant.

I. INTRODUCTION

T HE efficient evaluation of the nonuniform Fourier sam-
ples of an N-point discrete signal is a central problem

in many areas including tomography [1], [2], magnetic reso-
nance imaging [3]–[5], synthetic aperture radar [6], recovery
of band-limited images [7], [8], filter design [9], [10], and
wavelets [11]. The brute-force evaluation of the Fourier sum
at nonuniform signal samples is computationally expensive.
Hence, the standard approach is to obtain these samples as the
interpolation of the uniform Fourier transform. The uniform
Fourier transform is computed using the standard K-point fast
Fourier transform (FFT) , while support limited func-
tions (e.g., Kaiser–Bessel, Gaussian) are used to interpolate the
samples. It is reported that weighting the signal with suitable
scale-factors, before evaluating the uniform FFT, significantly
reduces the approximation error [12], [13]. This approach is
often referred to as “type-2” nonuniform fast Fourier transform

Manuscript received April 24, 2008; accepted December 25, 2008. First pub-
lished February 06, 2009; current version published May 15, 2009. The asso-
ciate editor coordinating the review of this manuscript and approving it for pub-
lication was Prof. Pierre Vandergheynst. This work is supported by the Clinical
and Translational Research Institute at the University of Rochester.

M. Jacob is with the Department of Biomedical Engineering, University of
Rochester, NY 14622 USA (e-mail: mathews.jacob@rochester.edu; website:
http://www.cbig.rochester.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSP.2009.2014809

(NUFFT), to differentiate it from the gridding scheme (type-1
NUFFT) [12]–[15].

Our work is motivated by iterative non-Cartesian MRI
[3]–[5] and iterative tomographic reconstruction [1], [2].
NUFFT schemes are often used to accelerate the computation
of the forward model, which needs to be evaluated during
each iteration [4], [5]. Current NUFFT schemes have some
drawbacks that limit their practical utility in reconstructing
large multidimensional datasets. Since the accuracy of the
reconstruction algorithms are heavily dependent on the quality
of the NUFFT approximation, it is a general practice to evaluate
the Fourier transform on a fine uniform grid (e.g., )
to minimize the interpolation error [13]. This approach signif-
icantly increases the memory demands of the algorithm. For
example, the reconstruction of a three dimensional data-set with

requires eight times more memory that the original
data-set. Another drawback is in the suboptimal selection of
scale factors. Although scale-factors play a significant role in
reducing the NUFFT error, they are often selected arbitrarily
[12] or are restricted to parametric families with few degrees
of freedom [13]. This limits the performance of the NUFFT
approximation significantly. Finally, there is no well-accepted
methodology for selecting the sampling step in the discretiza-
tion of the interpolators themselves. The exact evaluation of
the interpolators at noninteger samples, within the iteration
loop, is computationally expensive. Hence, it is a general
practice to obtain these samples by linearly interpolating their
precomputed uniform samples. This practice may considerably
increase the approximation error, if the sampling step is not
properly selected.

The main focus of this paper is to overcome the above limi-
tations and thus derive a memory efficient approximation to the
nonuniform Fourier transform. We show that the widely used
NUFFT scheme is essentially a periodic shift invariant approxi-
mation [16]–[18] of the exact discrete Fourier transform. Based
on our earlier results [19], we derive an exact expression for
the worst-case mean square approximation error. This metric
conveniently decouples the error contributions resulting from
the scale-factors and the interpolator into two separate positive
terms. This enables us to optimize both the scale-factors and the
interpolator using the same performance measure. Specifically,
we obtain a closed form expression for the optimal least-square
scale-factors (OLS scale-factors) for a specified interpolator.
Assuming these scale-factors, we derive the error metric that is
only dependent on the interpolator. We then introduce an itera-
tive re-weighted minimization algorithm to obtain the optimized
least-square interpolator (OLS-interpolator). Using analogous
arguments, we also derive the worst-case error resulting from
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the discretization (lookup table based evaluation) of the inter-
polator. This expression is useful in determining the minimum
oversampling factor that is required so that the performance of
the interpolator is not limited by discretization. From theoret-
ical and numerical comparisons, we find that the OLS-NUFFT
significantly ameliorates the accuracy over classical approxima-
tions, especially when the length of the uniform FFT is small.
Since the length of the uniform FFT determines the memory
demands of the algorithm, these developments can lead to a
memory efficient multidimensional NUFFT scheme.

Our paper is inspired by the work of Fessler et al. where the
authors derived the interpolator by optimizing the maximum
worst-case NUFFT approximation error [13]. An analogous ex-
pression was derived by Neislony et al. using the matrix formu-
lation [20]. The main limitation of these expressions is their in-
ability to decouple the effect of the scale-factors from that of the
interpolation function. Hence, Fessler et al. restricted the scale-
factors to a parametric family with few degrees of freedom and
derived optimal parameters using exhaustive search [13]. An al-
ternative is to assume Kaiser–Bessel or Gaussian scale-factors
and optimize the interpolator [13], [20]. Since these approaches
restricted the flexibility of the scale-factors and hence the op-
timal interpolation functions, the performance of these NUFFT
schemes was only comparable to the one using the min–max op-
timized Kaiser-Bessel function [13]. Both of the above schemes
ignored the error in discretizing the interpolation function. We
find that this is a dominant component, often limiting the per-
formance of the NUFFT scheme.

Error metrics, analogous to the proposed one, were proposed
by several authors in the context of NUFFT. Steidl et al. devel-
oped an expression for the norm of the approximation error
[15], [21]. This expression also decouples the effect of the in-
terpolator and scale-factors into two terms. However, it is not
obvious on how to use this expression to derive the optimal in-
terpolator and scale-factors since it is significantly more non-
linear than the proposed one. In the context of gridding (type 1
NUFFT), Jackson et al. used the out of band energy of the inter-
polation function as a measure of the aliasing error [22], while
Beatty et al. developed a related expression that quantified the
point wise aliasing amplitude [23]. Although these expressions
were derived in the context of gridding, they bear some sim-
ilarity to the first term of our band-limited metric (for almost
band-limited functions). Jackson et al. used an iterative scheme
to derive a finitely supported interpolating function that is maxi-
mally band-limited [22]; the resulting function is an approxima-
tion for the prolate spheroidal wave function. In contrast, Beatty
et al. used second order cone programming to derive the inter-
polator that minimized the point-wise aliasing amplitude [23].
They obtained a slight improvement in aliasing error over the
Kaiser–Bessel function, which in-turn is an approximation of
the prolate spheroidal function.

The rest of the paper is organized as follows. In the next sec-
tion, we review the fundamentals of periodic shift invariant rep-
resentation, its error analysis, and the standard NUFFT method.
In Section III, we apply the error expression to the NUFFT
method and derive the optimal least-square scale-factors and

outline the derivation of the interpolator. In the following sec-
tion, we derive the optimal discretization of the interpolator and
quantify the error contribution resulting from the lookup table
based evaluation of the interpolator. We compare the perfor-
mance of the interpolator to the standard methods using theo-
retical metrics as well as numerical simulations in Section V.

II. PRELIMINARIES

A. Shift Invariant Approximation of Periodic Signals

The shift invariant representation is widely used for functions
in [16]–[18]. The shift invariant representation of the
signal is given by

(1)

where is the shift invariant basis function and
are the coefficients. The basis function is often assumed to

be finitely supported in , where is an integer. This
scheme can be extended to -periodic signals, when the period

is an integer multiple of the sampling step (i.e., )
[19], [24]. We assume and to be even integers, although
there is no such restriction in the general setting [19]. For peri-
odic signals , we have

(2)

Assuming to be a linearly independent
set of basis functions, this relation is only satisfied when

. Using this -periodicity of , we rewrite the
above equation as

(3)

where is the -periodized version of :

(4)

The coefficients are derived as the
inner-product between and the shifted

analysis functions :

(5)

Here, denotes the conjugate of the function . Note
that both and are -periodic functions and need
not be support limited. If and are biorthogonal (i.e.,

), then is
a projection of onto the shift invariant space:
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The synthesis equation in the periodic case (3) can also be
written as (1), where the coefficients
is the periodized version of . This is probably more fa-
miliar in the context of NUFFT; it denotes a simple interpolation
using the finitely supported function
and periodic boundary conditions. This evaluation of a specific
sample requires multiplications and additions.

B. Expression for the Approximation Error

The main factors that determine the quality of the shift-in-
variant approximation of the periodic signal are as follows:

1) the interpolation function ;
2) the sampling step ;
3) the -periodic analysis function .

A careful optimization of these factors is essential to mini-
mize the approximation error, while keeping resources such
as memory and computational complexity to a minimum. An
exact expression for the approximation error is essential for a
systematic computational optimization of the scheme.

We had derived the expression for the average error in ap-
proximating an arbitrary periodic function in a shift invariant
(SI) space in [19]. The space is only integer shift variant;
shifting the function to (by noninteger multiples
of the sampling step) affects the approximation error. The error
is periodic with period . The average mean square
error1 (averaged over all possible shifts) is shown in [19] as

(6)

where the error kernel is given as

(7)

In (6), are the Fourier series coefficients of ,
defined by

(8)

and is the Fourier transform of :

(9)

In (7), is the discrete
Fourier transform of the autocorrelation sequence

. Moreover, denotes
the dual function of . Both and are positive terms.

1The variations in the error with respect to the shifts are shown to be small;
the average error is a good indicator of the performance in most applications.

Moreover, is only dependent on , while is depen-
dent of the analysis function ; this term vanishes iff

(10)

With this specific choice of the analysis function, the error ex-
pression simplifies to

(11)

This is the minimum achievable mean square error for a speci-
fied signal , an interpolator and the sampling step .
Note that the metric (11) is independent of the analysis func-
tion . The approximation , derived using of the optimal
analysis function specified by (10), is the orthogonal projection
of onto .

C. NUFFT: Problem Statement

For simplicity, we restrict our attention to the 1-D
NUFFT problem. We are given equally spaced samples

. The goal is to derive an efficient
approximation of the discrete time Fourier transform (DTFT)
of this sequence:

(12)

at the nonuniform frequency locations . Note
that the conventions are slightly different from the previous sec-
tion, where the discrete sequence indicates the Fourier se-
ries of the continuous domain function . In contrast, here
we have as the discrete Fourier transform of the sequence

. The direct evaluation of (12) is computationally expensive
(requires operations). Clearly, the continuous domain
function is -periodic. The frequency samples may
thus be assumed to be in the range , without loss
of generality. The sequence may be obtained from the con-
tinuous domain function as

(13)

D. Mathematical Formulation of the NUFFT Approximation

To reduce the computational cost in evaluating (12), the
standard practice is to approximate it as an interpolation of the

-point uniform discrete Fourier transform (DFT) (
even) of :

(14)
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Although this equation is valid for , it only needs to be
evaluated for because of the -peri-
odicity of . This summation is efficiently evaluated using
FFT and has a computational complexity of . The
weights are termed as scale-fac-
tors in the NUFFT literature. They are often chosen heuristically
[12] or as a function of [13]. The NUFFT scheme thus approx-
imates the exact DFT, specified by (12), as the interpolation of

using assuming periodic boundary conditions [12], [13],
[25]

(15)

Since is support limited in the range , the
ideal interpolator and scale-factors are
and , respectively [13]. The NUFFT interpola-
tion using these scale-factors and interpolator is exact. How-
ever, since the sinc function is not support limited, there is no
computational gain in computing (15) over the direct evalua-
tion. Hence, the general practice is to approximate the sinc func-
tion using support limited interpolators (support limited in the
range ) such as Kaiser–Bessel, Gaussian, or opti-
mized functions [12], [13], [25]. The computational complexity
in performing the Fourier interpolation at nonuniform points
is . Nonuniform scale-factors are used here to compen-
sate for the finite support.

E. Discretization of the Interpolator

The computation of (15) at arbitrary sampling locations
requires the evaluation of at the locations

. Since is support limited in the range eval-
uations of the interpolator at noninteger sampling locations are
required to compute each Fourier sample . The widely
used interpolators have either complicated expressions or are
obtained using optimization schemes. To prevent the evalua-
tion of the interpolator from dominating the computational com-
plexity, researchers often precompute the interpolators on a uni-
form grid, which is much finer than the grid on which the DFT is
evaluated. Nonuniform samples of the interpolator are obtained
by interpolating these lookup table entries using linear or nearest
neighbor methods. We denote the oversampling factor by and
assume it to be an even integer. Thus, the interpolation function
is modeled as (15)

(16)

where is the B-spline function. The proposed theory is appli-
cable for any discretization. We will specifically focus on linear
and nearest neighbor interpolation, since they are the widely
used schemes. The linear B-spline function is defined as

if
otherwise

(17)

Fig. 1. Illustration of the NUFFT pipeline. The sequence � is evaluated as
the K-point FFT of the input sequence ����, weighted by the scale-factors
����. � is over-sampled by � and interpolated to a fine uniform grid, using
the discrete sequence ������ � ����� � � � � � ���� � �. These uniform
samples �� 		�	
�	
�

 are then interpolated using linear or nearest
neighbor schemes to obtain the nonuniform Fourier samples (denoted by the
dots) �� 	� 
.

while the B-spline function of degree 0 is defined as

if
otherwise

(18)

The coefficients in (16) are the samples of the specified
function (Kaiser-Bessel/Gaussian) at the sampling locations

. In (16), we assumed that .
With the interpolation model (16), may also be
thought of as the linear interpolation of the uniform samples

:

(19)

We substituted (16) in (15) and used the relationship
, where is the Kroneker delta function,

to obtain the above equation. It implies that the uniform samples
are derived by up-sampling by and

filtering it by the discrete filter . The entire NUFFT pipeline
is illustrated in Fig. 1. In standard computational schemes, the
last three steps (oversampling, filtering by and interpolating
using B-spline functions) are combined into a single complex
operation for computational efficiency. We have chosen to ex-
pand these steps as in Fig. 1 to obtain a better understanding of
the process and for the ease of analyzing the error involved in
the discretization (see Section IV-C).

III. OPTIMAL NUFFT SCALE-FACTORS AND INTERPOLATOR

In this section we introduce the framework to derive the
optimal NUFFT scale-factors and interpolator. We derive the
worst-case error in approximating a periodic signal in a shift in-
variant basis, which is then used to choose the optimal NUFFT
parameters.

A. NUFFT as a Shift Invariant Approximation

We now show that the NUFFT approximation is essentially
a shift invariant approximation of , the original discrete
Fourier transform of , in the shift invariant space .
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Note that the NUFFT synthesis equation, specified by (15),
is already in the same form as (1). Substituting with the
inverse Fourier transform of in (14), we obtain

(20)

Thus, the derivation of the coefficients in NUFFT can be in-
terpreted as the inner-product between the
exact continuous domain Fourier transform of , denoted
by , and the analysis functions

. Thus, the NUFFT scale-factors are anal-
ogous to prefilters in shift invariant representations [26], [27].
Note that the equivalent analysis function need not be support
limited, even when is support limited.

B. Error Expression

Having shown that the NUFFT scheme is a shift invariant
approximation, we now use the error metric introduced in
Section II.B to analyze it. In contrast to the standard shift
invariant setting, the NUFFT interpolation is performed in the
Fourier domain; is the discrete Fourier transform of .
Applying (6) to the representation of , we obtain

(21)

We use the finite support of to restrict the range of the
summation. The negative sign in the index of is because
of the difference in the definitions of and [see (13)
and (8)]. We now use this error expression to derive the optimal
least-square scale-factors.

C. Optimum Least-Square Scale-Factors

From (10), it is easy to see that if the scale-factors are
chosen as

(22)

then is the orthogonal projection of onto the
shift invariant space. This corresponds to the minimum achiev-
able mean square error for any signal . The indexes of

in (22) have negative signs because is defined as the
inverse discrete Fourier transform of in (20). We term this

as the optimal least-square (OLS) scale-factors. When
the interpolator is a real valued function and its energy is
concentrated in the Fourier domain (e.g., prolate spheroidal

wave functions), the optimal scale-factors may be approx-
imated (assuming for and

) as

We also need to assume that , which is valid if
is real. These approximate scale-factors are reported as the

minimum aliasing error choice in [13]. The optimal LS scale-
factors, specified by (22), provides the minimum possible error
over all scale factors:

(23)

Here, we used the symmetry of the error kernel.

D. Worst-Case Approximation Error

Note that (23) is dependent on the signal samples . We
would like to have an expression that is only dependent on the
interpolator. We now define the worst-case mean square error
as the maximum of over all possible sequences

. Using Schwartz inequality, we obtain

(24)

Note that this is a tight bound for the approximation error. Se-
quences that satisfy

leads to the worst-case error. We show that (24) can be ex-
actly and efficiently evaluated for any discretized interpolator in
Section IV-A. Thus, it can be used to determine the optimal pa-
rameters of Kaiser–Bessel and Gaussian interpolators. Our main
focus is to use this metric to derive the optimal least-square in-
terpolator. Note that we derived the optimal scale-factors, before
computing the worst-case error expression, only for simplicity.
Since and are positive terms, the OLS scale-factors
also leads to the minimum worst-case mean square error (over
all possible scale-factors). The OLS scale-factors and the inter-
polators are optimal with respect to the worst-case mean square
error criterion.

E. Optimized Least-Square Interpolator

Our goal is to derive a that is finitely supported in the range
and minimizes the worst-case LS error:

(25)
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subject to . Note that the functional is
nonquadratic. It is difficult to derive the continuous domain in-
terpolator that minimizes the criterion. Moreover, obtaining the
analytical expression of is not useful in a practical NUFFT
setup, as discussed previously. Hence, we propose to numeri-
cally derive the optimal discretization of . We propose to use
an iterative re-weighted minimization algorithm. Towards this
end, we rewrite the criterion as a weighted quadratic criterion:

(26)

We split the original criterion into two parts. We define the
weights as

otherwise
(27)

At each iteration of the iterative algorithm, we assume the
weights to be fixed and derive the that minimize the
weighted quadratic criterion (26). The weights are then
recomputed using (27). This process is repeated until the min-
imum of is reached. We do not make any theoretical claims
on the convergence of the scheme to the global minimum.
However, we observe that it converges to the same solution for
all the initializations and parameter settings that we considered,
unless (see Section V). The algorithm fails to converge
when . A more detailed description of the algorithm for
discretized interpolators is given in Section IV-B.

F. Similarity to the Kaiser–Bessel Interpolator

If we set , then (26) can
be rewritten as

(28)

(29)

The first term in (28) is approximately equal to
. It is an equality when

; when , the above approximation ignores

some of the high frequency terms of , but may be valid for
interpolators that are almost band-limited. The interpolator that
minimizes (29) in-turn maximizes the in-band energy (energy
in the range ). The well known zeroth order
prolate spheroidal wave function (PSWF) is a unit norm
function , which is finitely supported in the range

and have maximal energy in a specified range in
the Fourier domain [28]

(30)

Thus, the function obtained by the minimization of (29) may
be seen as the discrete counterpart of the PSWF (29). The
Kaiser–Bessel function was introduced as an approximation to
the PSWF function [29]. Kaiser–Bessel functions are widely
used in NUFFT and they give the best performance among
other well known interpolators [13], [23].

IV. NUMERICAL EVALUATION OF THE DISCRETIZED

INTERPOLATOR

In this section, we elucidate the iterative reweighted mini-
mization scheme to derive the optimal discretization of the inter-
polator in more depth. We start by reducing the infinite summa-
tions in the worst-case error expression to finite sums to obtain
an exactly computable metric.

A. Discretized Interpolator: Worst-Case Error Expression

To be consistent with the lookup table based evaluation of
the NUFFT, we propose to derive in the space spanned by
linear B-spline functions. Using the model specified by (16), the
derivation of the OLS interpolator boils down to the derivation
of the finite sequence . Com-
puting the Fourier transform of (16), we obtain

(31)

where is the discrete time Fourier
transform of . It is a -periodic function, and hence

is a -periodic function. Using this model, we
show in the Appendix that the infinite sums in the numerator
and denominator of (24) are reduced to finite summations:

(32)

(33)

where . Here, and
are defined by (44) and (47). The functions and have exact
expressions in terms of the autocorrelation of B-spline functions
[30] (See the Appendix for details.) Using these relations, we
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compute the weights . Substituting from (33) in (26) and
simplifying as shown in the Appendix, we obtain

(34)

This is a weighted norm in the Fourier domain, where the
weights

(35)

are assumed to be fixed at each iteration. We estimate the sam-
ples of the interpolator
such that this metric is minimized, subject to .

B. Iterative Reweighted Minimization Algorithm

As discussed earlier, we propose an iterative algorithm that
uses the following steps: Start with an initial sequence .

1) Set .
2) Using , derive the optimal weights specified by

(35).
3) Using the current weights , derive the optimal co-

efficient sequence that minimizes (34), subject to
. We show in the following section that the

derivation of can be formulated as an eigendecompo-
sition problem.

4) Derive using the previous estimate and as
where

(36)

5) Exit if . Else, set .
6) Goto step 2.
Step 4 of the above algorithm is a one dimensional minimiza-

tion procedure to ensure the monotonic convergence of the al-
gorithm. The step-size is determined using a simple linear
search. We choose the initial sequence as the samples of
the optimized Kaiser-Bessel interpolator. We show in Section V
that the final interpolator, to which the algorithm converges, is
not dependent on the initialization. We now focus on step 3,
where we derive the optimal that minimizes (34) subject to

, for a specified . This problem can be
rewritten in the matrix form as

subject to

(37)

where is the DFT matrix, is the
diagonal matrix with diagonal entries as .

is the autocorrelation matrix with entries
. and

are matrices of dimension . Solving
this constrained minimization problem using the Lagrange’s
multiplier method, we obtain

(38)

where is the minimum generalized eigenvalue of the ma-
trix pair [31].

C. Error Due to the Discretization of the Interpolator

As discussed in Section II-E, we discretize the interpolator
for its efficient evaluation within the NUFFT. The quality of the
discretization depends on the oversampling factor. It is desirable
that the minimum possible oversampling factor is chosen so as
to minimize the size of the lookup table. At the same time, it
is crucial that the interpolator is sampled at an adequately high
rate so that the worst-case least-square error is not dominated by
discretization. Due to these contradicting demands, it is highly
desirable to quantify the error due to the discretization of the
interpolator in the NUFFT approximation.

As seen in Section II-E, the approximation may
also be interpreted as the linear interpolation of the sequence

:

(39)

where is obtained by convolving the up-sam-
pled version of with ; are the uniform samples of
the interpolator. In this two step process, there are two main
error sources: a) the error in approximating the uniform sam-
ples of the DFT, (denoted by ) by
and b) the error in approximating as the interpolation of
the uniform samples . The first term is dependent
on the specific choice of the sequence , while the second term
is dependent on the B-spline interpolator . To separate these
error components, we rewrite (39) as

(40)

Using this relation, we obtain the total approximation error as

(41)
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Fig. 2. Illustration of the convergence of the algorithm. The iterative reweighted algorithm was initialized with B-spline functions of degree 0 to 5, indicated by
the curves in a. We derived the OLS interpolator using the iterative reweighted minimization algorithm, assuming � � ���� � � ���� � � ���� � � �. Note
that the final solution is the same, irrespective of the initialization. The worst-case errors are also the same, up to numerical precision. (a) Initializations. (b) Final
solution.

Fig. 3. Effect of discretization on the worst-case error. We considered� � ��� and� � ���. (a) indicates the decay of the worst-case OLS errors as a function
of � , when � � �� and linear interpolation is used. It is seen that the discretization error dominates the total error for interpolators with � � �. (b) shows the
worst-case error curve for � � ��� and linear interpolation. The performance of the NUFFT is significantly improved in this case. (c) indicates the decay for
the same settings, but nearest neighbor interpolation. It is seen that the error saturates to a slightly lower value that the linear interpolation case with � � ��. (a)
� � ��; Linear interpolation. (b) � � ��� Linear interpolation (c) � � ���; nearest neighbor interpolation.

Here, we used the triangle inequality of the norm. Thus, the
first term in (41) is dependent on the specific choice of , while
the second term is independent of . It is dependent on
the sampling interval , the discrete sequence , and
the B-spline function . Using the same argument as in (24),
we upper bound of this term as

(42)

We compare this term with the total worst-case NUFFT error
specified by (24) to see if it is the dominant component. As a
thumb rule, we seek to keep the worst-case discretization error
around 10 times smaller that (24) by appropriately choosing the
oversampling factor and the degree of the B-spline interpo-
lator.

D. Utilizing Symmetry to Reduce Computational Cost

The evaluation of step three of the iterative reweighted algo-
rithm (described in Section IV-B) involves the eigendecompo-
sition of the matrix pair , specified by (38). The compu-
tational complexity and the numerical stability of the eigen de-
composition grows significantly with the sizes of and . The
number of unknowns (length of ) can be reduced by a factor
of two by assuming the interpolation functions to be symmetric.
The matrices and can also be modified to account for the
symmetry, thus reducing their size by a factor of 2 in either di-
mensions. This approach significantly reduces the computation
time (often by a factor of 10 or more). The decrease in computa-
tional complexity becomes even more significant for high values
of and . We demonstrate that there is no performance loss
in using the symmetry constraint in the next section.

V. RESULTS

In this section, we analyze the convergence of the iterative
reweighted algorithm, the effect of discretization and the use of
symmetry constraint. We also compare the OLS NUFFT scheme
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Fig. 4. Comparison of symmetric and nonsymmetric interpolators at � � ���� � ���� � � and � � ���. Both the algorithms were initialized with the
optimized Kaiser–Bessel function. Note that the shape of the optimal interpolators and the error kernels are overlapping. The scaled (by 1e6) differences between
the functions and the absolute differences between the kernels are also shown. (a) Interpolators. (b) Error kernels.

Fig. 5. Optimal least-square parameters of the Kaiser–Bessel and Gaussian functions. These parameters are assumed in all the comparisons considered in this
section. (a) Optimal KB parameters. (b) Optimal Gaussian parameters.

with standard approximation methods using theoretical metrics
as well as numerical methods.

A. Analysis of the Iterative Reweighted Algorithm

We first demonstrate the convergence of the algorithm on a
specific example .
We consider a wide range of input initializations (ranging from
B-spline of order 0 to order 5). It is seen from Fig. 2 that the
final solution is the same, irrespective of the initialization. We
performed similar comparisons for a wide range of parameter
sets ( , and ) and verified that the algorithm converges
to the same function in all the cases, except when . In
this case, the iterative reweighted minimization scheme fails to
converge.

We study the effect of the discretization of the interpolators on
NUFFT performance in Fig. 3. We considered

and varied from 3 to 10. The worst-case total errors of the
OLS interpolators and the corresponding worst-case discretiza-
tion errors are plotted for (a) and linear interpola-
tion, (b) and linear interpolation, and (c)
and nearest neighbor interpolation. It is seen from Fig. 3(a)

that for , the worst-case total error saturates to the
worst-case discretization error, when . The comparison
of the error metrics specified by (42) and (24) enables us to de-
termine whether the performance of the NUFFT is limited by
the discretization. Note that (42) is a good indicator of the influ-
ence of discretization on the total error. Note from Fig. 3(b) that
choosing significantly decreased the errors over

. However, some saturation effects can be seen as the worst-
case total error curve approaches the worst-case discretization
error. It is seen in that even better results are obtained by further
increasing to 170 in Fig. 7. The nearest neighbor interpola-
tion using performs only slightly better than the linear
interpolation with [see Fig. 3(c)]. Hence, we will as-
sume linear interpolation for all the comparisons.

We now show that there is practically no difference in the
performance between interpolators optimized with and without
the symmetry constraint in Fig. 4. In contrast, the time taken to
evaluate the functions on a Macintosh 2.33-GHz Intel Core2Duo
processor is 14 and 143 s, respectively. The drastic reduction in
complexity is due to the decreased size of and matrices,
leading to eigen decomposition of a smaller system. We have
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performed similar studies for a range of parameter settings and
verified that the use of symmetry constraint does not decrease
the performance. The performance improvement in using the
symmetry constraint increases with and . Hence, we re-
strict our attention to symmetric interpolators in the rest of the
paper.

B. Comparison With Standard Interpolators

We compare the performance of the OLS function with
Kaiser–Bessel, Gaussian and min–max interpolators in this
subsection. To perform objective comparisons, we optimize the
Kaiser–Bessel (KB) and Gaussian interpolators with respect
to the mean square criterion (see Fig. 5). We assume the KB
order to be zero and determine the optimal value for . It is
seen that the optimal varies almost linearly with from
Fig. 5(a), while the slope is different for different values of .
When , we find that the slope is approximately 2.30,
close to the optimal value determined by Fessler et al. [13].
The parameter of the Gaussian function
corresponding to the different parameter settings are also shown
in Fig. 5(b). We also use the OLS scale-factors (22) for these
interpolators.

For the min–max interpolators, we use the scale-factors with
the highest order that is reported in [13], when . For

, we derive the scale factors by performing a least-
square fit of the parametric model to the op-
timal Kaiser–Bessel scale-factors (see [13] for details). The de-
fault of gives interpolation errors that are comparable to
uniform scale factors. However, increasing beyond 22 results
in poor fit to the KB scale factors due to the bad conditioning of
the system matrix.

The interpolators and their error kernels at and
are shown in Fig. 6. It is seen that the subtle variations

in the shape of the interpolators (Kaiser–Bessel, Gaussian and
the OLS functions) in Fig. 6(a) lead to significant discrepancies
in the error kernels. In contrast to the OLS function, the error
kernels of the standard interpolators are significantly elevated
close to the edge of the signal as shown in Fig. 6(b), thus re-
sulting in higher worst-case errors. By spreading the error to all
spatial locations, the OLS interpolator significantly reduces the
worst-case mean square error. The OLS interpolator gave lower
errors at most spatial locations when compared with the other
functions, even when . However, the performance im-
provement in this case is not as drastic as in (a-b). It is seen from
Fig. 6(e) and (f) that the error kernels of the min–max interpo-
lator, derived with the assumption of third order scale-factors,
are comparable to the OLS function.

In Fig. 7, we compare the different interpolator families
based on the worst-case mean square error (24) and the
min–max error (derived in [13]). The comparisons were per-
formed at and , respectively.
Fig. 7(a) and (d) denotes the error curves at and
oversampling factor . The use of a high oversampling
factor ensures that this term is not the significant contributor.
Similar comparisons are shown for and
in Fig. 7(b) and (e) and Fig. 7(c) and (f), respectively. Note
that although we minimized the worst-case mean square errors,
the proposed NUFFT scheme performs very well with respect

Fig. 6. Comparison of the OLS interpolator with classical schemes. (a), (c),
and (e) compares the interpolators at � � ���� � ���� � � ��� and
� � �. (a) indicates the shape of the interpolators (c). Comparison based on
the mean square error kernel. (e). Comparison based on the min–max error
criterion derived in [13]. (b), (d), and (f): Comparison of the interpolators for
� � ��	� � ���� � 
 and � � ���. (d) indicates shape of the interpola-
tors while (e) and (f) shows the mean square error kernel and the min–max error
kernels. (a) Interpolator: � � ���� � � �. (b) Interpolator: � � ��	�� � 
.
(c) MS error kernel: � � ����� � �. (d) MS error kernel: � � ��	�� � 
.
(e) MM error kernel:� � ����� � �. (f) MM error kernel:� � ��	�� � 
.

to both the error metrics at almost all parameter settings.
The min–max estimator provides lower min–max errors for
lower values of . However as the length of the interpolator
increases, its performance deteriorates. This is probably due to
the insufficient accuracy of the least-square fit to the optimal
Kaiser-Bessel scale factors. As explained previously, the use

instead of the default value improves the
performance min–max interpolators. In the case, we
used the best scale-factors that were available for the min–max
interpolator. Third order scale-factors were used for and

, while only second order scale-factors were available for
the rest (this explains the oscillatory nature of the mean square
error). Note that the min–max interpolator gives comparable
errors with the OLS function for and lower values
of . However, its performance saturates for higher values
of , probably because of the limited number of scale-factor
parameters that can be derived in the min–max setting. It is seen
from Fig. 7(f) that the min–max interpolator performs better
than the OLS function with respect to the maximum worst-case
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Fig. 7. Theoretical comparison of the different interpolator families. (a) and (b)
indicate the decay of the worst-case mean square and min–max errors respec-
tively for� � ��� and oversampling ���	
� � ���. The worst-case discretiza-
tion error is displayed in magenta. (c), (d): Comparison of errors for � � ��

and � � ���. As mentioned previously, we used uniform scale-factors for
the min–max interpolators for (� � ��� and � � ��), while optimized
min–max scale-factors from [13] were used for � � �� . (e), (f) Comparison
of different kernels at � � ����� � ��� and � � ���. (a) � � ���. (b)
� � ���. (c) � � ��. (d) � � ��. (e) � � ���. (f) � � ���.

error metric, when . However, note from Fig. 6(f) that the
min–max function gives higher errors than the OLS function at
most frequency locations for the case (except close to
the signal boundary).

It is seen from the comparisons that the proposed OLS
NUFFT scheme significantly outperforms its closest com-
petitor: the Kaiser–Bessel interpolator. The performance
improvement is more significant for small values of . For
example, the use of the OLS interpolator provides approxi-
mately a factor of decrease in the mean-square error at

. The interpolator settings
provides a worst-case error, which is comparable to that ob-
tained with at . Since lower value of
implies NUFFT algorithms with lower memory demands, these
cases are of foremost interest in practical applications.

C. OLS Interpolators for Different Parameter Settings

We now analyze the OLS interpolators in more detail. In
Fig. 8, we plot them for different values of and . The
interpolators are normalized so that their integral is one. Note
from Fig. 8(c) that the functions are discontinuous at the bound-
aries and at the origin for lower values of . As increases,

Fig. 8. Shape of the interpolators at different values of � and � . The figures
in the top row, (a) and (b) show the interpolators for different values of � , cor-
responding to � � ��� and � � ���, respectively. The bottom row shows
the interpolators at different values of� for � � � and � � � respectively. (a)
� � ���. (b) � � ���. (c) � � �. (d) � � �.

they become smoother [see from Fig. 8(d)]. It is seen that the
interpolator changes its shape significantly with ; when

, it approximates the linear B-spline function.

D. Numerical Simulations

We now compare the numerical performance of the interpo-
lators in a simple one dimensional experiment. We considered
the center line [shown in Fig. 9(a)] of the standard 128 128
Shepp–Logan phantom. The Fourier transform of this phantom
is evaluated at 10 000 uniformly distributed random points (in
the range ) in the Fourier domain. We consider the
exact Fourier transform of the sequence at these points as the
ground truth. The NUFFT approximations using the OLS and
the standard interpolators optimized with respect to the worst-
case mean square error are compared to the ground truth. We
plot the errors as a function of and in Fig. 9. Note that
the NUFFT interpolation using the OLS interpolator provides
the best performance, consistent with theoretical worst-case pre-
dictions. Note that the error curves follow the same pattern as
predicted by theory. The NUFFT approximation at
and provides almost the same mean-squares error as

and .

VI. DISCUSSION AND CONCLUSION

The main focus of this paper was to derive a memory effi-
cient approximation for the nonuniform Fourier transform of
a discrete sequence. We derived an exact and computable ex-
pression for the worst-case mean square error in approximating
the exact Fourier transform using the nonuniform fast Fourier
transform (NUFFT) method. This metric was used to derive the
optimal NUFFT interpolator and scale-factors, thus resulting in
an algorithm with lower approximation errors. We also quanti-
fied the error in discretizing the interpolator. This measure en-
sured that a lookup table of sufficient size is used so that the dis-
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Fig. 9. Numerical comparison of the different interpolators using the center
line of the Shepp–Logan phantom shown in (a). The errors in the comparisons
(between the exact evaluations and the NUFFT approximations) are plotted for
different values of � and � . (b) � � ��� (c) � � ���.

cretization error is not the dominant component. We compared
theoretical and numerical performance of the proposed NUFFT
scheme with standard methods. The comparisons clearly indi-
cated that the proposed method significantly reduces the errors,
especially when the oversampling factor is small. Thus, the pro-
posed NUFFT scheme can result in iterative signal reconstruc-
tion schemes with much reduced memory requirements.

We focused on the derivation of one-dimensional interpolator
in this paper. A simple strategy to extend this scheme to multiple
dimensions is to consider the tensor product of 1-D interpolators
[13]. This interpolator will inherit the error minimizing proper-
ties of the 1-D scheme.

The computationally demanding components of the NUFFT
algorithm are (a) the evaluation of the uniform FFT and (b) the
interpolation in the Fourier domain. Increasing the length of
the uniform FFT augments the computational complexity faster
than linear, while the cost of the interpolation increases linearly
with the support of the interpolator. From our numerical studies,
we found the computational complexity of the algorithm for

and to be roughly the
same. Note that these parameter choices gave approximations
with almost the same errors. Moreover, the Fourier interpola-
tions may be greatly accelerated using GPU implementations
[32]. Of these two cases, note that the
OLS NUFFT provides a factor of decrease in the required
memory for -dimensional data-sets over the
OLS NUFFT scheme.

APPENDIX

A. Derivation of (32) and (33)

Using the Fourier transform of the model for , specified
(16), the denominator of (24) becomes

(43)

Here, we used the periodicity of . Here, , specified by

(44)

is the DFT of the sequence .
B-spline functions have analytical expressions and hence can be
evaluated analytically at any specified location [30]. The kernel
need to be evaluated for . We rewrite the numerator
as the difference between the denominator term, derived above,
and :

(45)

For , this term can be rewritten as

(46)

where

otherwise
(47)

B. Derivation of (34)

Substituting from (46) in (26), we obtain
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(48)

In the last equation, we used a change of variables
to simplify the expression. Since is finitely supported [see
(27)], we rewrite the term as ,
thus making it independent of . Moreover, we combine the
summations (exploiting the structure of the support of ) to
obtain

(49)
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