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ABSTRACT 
 
In this paper we propose an efficient sparse reconstruction scheme 
for the parallel MRSI data acquired using a fast spiral scheme. We 
model the system using the MR priors estimated from the water 
reference scan. In our sparse reconstruction approach, we minimize 
the total variation and  norm of the compartmentalized MRSI 
data in order to reduce noise, inhomogeneity distortions, and 
spectral leakage. We demonstrate significant improvement for in 
vivo brain results when compared to classical regularized SENSE 
MRSI reconstruction. 
 

Index Terms— Magnetic resonance spectroscopic imaging, 
sparse reconstruction, spiral sequence, total variation 

 
1. INTRODUCTION 

 
MR spectroscopic imaging (MRSI) is an in vivo molecular 
imaging scheme that provides the concentration distribution of 
various brain metabolites. It is emerging as a useful technique for 
the diagnosis of various diseases including cancer [12], epilepsy 
[3], and multiple sclerosis [4]. The main limitations of this scheme 
that restricts its clinical utility include its poor signal to noise ratio 
(SNR), low spatial resolution, and the poor spatial coverage 
associated with this scheme. The low spatial resolution introduces 
several artifacts such as partial voluming errors, spectral leakage 
from extra-cranial lipids, and line-shape distortions induced by 
magnetic field inhomogeneity. Good spatial coverage is often 
highly desirable in cancer imaging applications to detect 
metastases separated from the location of the main tumor. 

Several fast scan imaging schemes that rely on time-varying 
gradients to rapidly acquire the k-space data have been proposed to 
improve the spatial resolution and coverage in a specified scan 
time. Echo-planar spectroscopic imaging (EPSI) [10], [7] and 
spiral MRSI schemes are the most popular fast-scan methods. 
Since non-Cartesian trajectories such as spirals oversample the k-
space center, these schemes are reported to be more SNR efficient 
compared to the classical EPSI schemes. 

Parallel MRI techniques have also been introduced to 
accelerate MRSI [13], [15]. These methods exploit the spatial 
diversity of the sensitivity patterns of phased array coils to 
undersample the k-space. The data is then recovered using 
reconstruction algorithms such as sensitivity encoding (SENSE) 
[6], [14]. The main challenge associated with all of these 
acceleration techniques is the loss in SNR. This is especially a 
huge concern in signal starved MRSI schemes, where the low 
metabolite concentrations translate to poor SNR. To obtain 
sufficient SNR to interpret the data, most of the above schemes 
rely on averaging the accelerated data at the expense of scan time. 

Most of the current non-Cartesian (e.g. gridding) and parallel 
MRSI schemes (kSPA, SENSE) recover each temporal frame of 

the spatio-temporal data independently using 2-D image 
reconstruction techniques [5], [11]. The spectral information is 
then recovered from these 3-D dataset by evaluating a temporal 
Fourier transform. Since these methods decouple the recovery of 
the 3-D dataset into several simpler 2-D reconstruction problems, 
they have limited capability in exploiting the redundancy in the 
spatial spectral data to make the problem well-posed and hence 
minimize the SNR loss. The above decoupled strategy also makes 
it difficult to compensate for distortions induced by magnetic field 
inhomogeneity as well as spectral leakage artifacts. 

We introduce a novel sparse reconstruction algorithm for the 
recovery of non-Cartesian parallel MRSI data to overcome the 
limitations of current reconstruction schemes. We pose the 
recovery of the entire 3-D dataset as a single optimization problem, 
which enables us to exploit the redundancy in the data and to 
compensate for the artifacts. Specifically, we regularize our 
reconstructions using the spatial total variation (TV) norm of the 
compartmentalized MRSI data. The 3-D reconstruction scheme 
also enables us to compensate for field inhomogeneity and  
losses by incorporating their estimates from water reference data. 
We also model the spectral signal as a sparse linear combination of 
spikes and polynomials, which was introduced in our previous 
work [1]. Using this model, the MRSI data will be a better fit for 
the spatial TV scheme. In addition, we can significantly reduce the 
error amplification in the reconstruction by making the problem 
well-posed.  

We acquire the k-space data using a spiral MRSI scheme with 
multiple spatial interleaves. Furthermore, we acquire the fully 
sampled data, which was retrospectively downsampled by skipping 
the interleaves. We demonstrate the utility of the proposed 
algorithm to significantly minimize the noise amplification in the 
reconstruction using numerical simulation and in vivo acquisition. 
We show that we can achieve a two-fold acceleration for the in 
vivo data acquired with multi-shot spiral trajectory and -channel 
head coil without significant loss in image quality. This enables us 
to reduce the scan time required for a single slice scan to , 
which is a significant reduction compared to the ten-minute scan 
time required in our previous EPSI based sequence. Hence, the 
proposed work has potential to enable whole brain MRSI 
acquisitions in around eight minutes. 

  
2. ACQUISITION SYSTEM 

 
We designed a spin echo MRSI sequence based on the analytical 
spiral trajectory reported in [2] for the  Tim Trio Siemens 
scanner. The trajectory covers  of 

the k-space data for a FOV of  and slice thickness of 
 resulting in a voxel size of . We used  

spatial interleaves with  and  Therefore, the 
total scan time without acceleration is . Each echo covers a 
spiral-out and the fly-back gradient to return the trajectory to the k-



Fig. 1. A schematic plot of the MRSI spiral trajectory. 

 

 

 

space center. The whole echo time is , which provides a 
bandwidth of  Fig. 1 shows a schematic plot of the MRSI 
spiral trajectory for an interleaf.  

For each interleaf, we used four analog-to-digital converters 
(ADC’s), each covering  echoes. We start each ADC a few 
milliseconds earlier than the start of the next echo in order to avoid 
ADC’s transient response during the readout. 

In addition to the water-suppressed MRSI data, we also 
acquire a water reference scan with the same resolution from 
which we estimate field map, sensitivity maps (for the employed 

-channel head coil), and water and fat masks. For in vivo scans, 
we apply saturation bands to suppress fat. Nevertheless, we still 
use a fat mask in our reconstruction to reduce leakage from the 
unsuppressed lipid signals. 

 
3. SPARSE RECONSTRUCTION 

 
3.1. Image Formation 
Ignoring the  relaxation time, we model the discretized single-
slice parallel MRSI acquisition scheme for a coil  

 when imaging  as 

 

 (1) 
Here   represents the field map in which 

  is the field inhomogeneity,  denotes the gyromagnetic 
ratio, and  is the spatial position in the slice.  

denotes the sensitivity map for the coil . The MRSI raw data for 

this coil  lie on the spiral trajectory . 

Here , , and we ignore the time 

required to scan each echo.  
Since the trajectory is not on a Cartesian grid, we need to 

estimate the non-uniform Fourier coefficients on a uniform grid in 
order to use fast Fourier transform (FFT). In our implementation, 
we use the recently proposed optimized least square non-uniform 
FFT [8].  
 
3.2. MRSI Reconstruction 
To reconstruct the MRSI signal  in (1), we take advantage 

of sparse nature of the MRSI data and propose to minimize spatial 
discrete TV norm of the signal using the following criterion  
 ,    s.t.    , (2) 
where the operator  denotes the system model as stated in (1).  
is chosen based on the standard deviation of the measurement 

noise. Note that in (2) we use the raw data  from all coil 

channels . We can reformulate (2) as 

  (3) 

The spatial TV norm is defined as  

 

where  is the finite difference along the  dimension 

.  

In order to reduce leakage and cross talks between different 
spatial regions in the MRSI data such as metabolites and the 
(remaining) fat signal, we propose to restrict the TV norm to only 

the water region  [1] (so we update the TV norm as 

), and the MRSI signal  to the whole spatial region 

defined by the brain boundary  that includes extra-
cranial fat region . Hence we rewrite the optimization problem 
(3) as 

  . (4) 

Here  where  is the masking operator defined as  

. 

Similar to our previous work [1], we model the MRSI spectral 
signal (in a region of interest (ROI) that contains metabolites 
peaks) as a linear combination of spikes and polynomials. This 
way, we sparsify the signal leading to a reduced TV norm that 
better fits to our model. Using sparsity criterion in our model, we 
make the problem well-posed especially when we apply 
undersampling. 

We decompose the signal  using the union of Diracs and 
polynomials bases functions  as 

 

and rewrite (4) as 

  (5) 

We added the  penalty in (5) to account for the spectral sparsity. 
Parameter  determines the level of smoothness of the 
reconstructed signal, whereas an appropriate selection of  
secures proper decomposition of the signal into polynomials and 
spikes and helps to remove noise. 

To find the system parameters for implementing the operator 
, we reconstruct the water reference scan using a variation of 

iterative SENSE reconstruction. We use Tikhonov regularization 
and OLS-NUFFT [8] in this scheme to reconstruct each channel 
and then we obtain sensitivity maps. Having the sensitivity maps, 
we form the reconstructed water MRSI data through the 
application of sum of squares. From the reconstructed water data, 
we estimate field map ,  decay, and the water and fat 
masks. In our model, we only compensate for the contribution of 
field map in ; that is, we compensate for  decay where 

. 
To implement the system model  for each channel  

, we use the following equation 

  (6) 

Here,  denotes the DFT along spectral dimension ,  

applies  as a point-wise 

multiplication, and finally  denotes NUFFT operator which 
calculates the Fourier transform of the resulting signal on the spiral 
trajectory  for all coil channels and time frames. 



Fig. 2. Left: Shepp-Logan phantom. Right: Magnitude of the metabolite
spectrum used in the simulation. 
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Fig. 3. Reconstructed NAA peak image along with a sample spectrum at 
the voxel shown by the arrow at different acceleration rates. Results using
the proposed and SENSE approaches are shown at top and bottom, 
respectively. 

 
 

 

To accelerate the acquisition, we uniformly skip the 
interleaves. Thus, for instance, to achieve two times acceleration 
( ), we only acquire interleaves . To reconstruct the 
undersampled data, we need to update the trajectory  in (6) with 
the used interleaves in the scan. 

 
4. EXPERIMENTAL RESULTS 

 
To test our sequence and the proposed parallel reconstruction 
algorithm, we acquired spiral MRSI data on a normal human 
subject. In addition, we carried out a numerical simulation to better 
benchmark our sparse reconstruction scheme. In all the 
experimental results, we compare our reconstruction to a Tikhonov 
regularized iterative SENSE reconstruction (referred as SENSE 
henceforth) in which we employed OLS-NUFFT [8], and restricted 
the MRSI data to the mask . In this scheme, we correct for the 
inhomogeneity and remove the baseline (for the same ROI as the 
proposed scheme) after reconstruction followed by a spatial 
Gaussian apodization. 
 
4.1. Simulation 
In this simulation we used Shepp-Logan phantom  at size 

 and made a simulated MRSI data  with size 

 by scaling and copying a reconstructed spectrum of 
a spectroscopy phantom  to all voxels of the Shepp-Logan 

phantom. Hence, we have . As seen in Fig. 2, 

 has a high magnitude water peak and three peaks 

corresponding to metabolites Cho, Cr, and NAA. 
We sampled  at a  spiral trajectory with  

interleaves in the k-space to obtain . For this simulation we 
assumed a -channel coil and no inhomogeneity distortion. We 
used the sensitivity maps we had obtained from the in vivo scans 
and modified them to cover the whole phantom. For this simulation 
we assumed noisy measurements where we added random 
Gaussian white noise to  resulting in SNR of  dB. 

We reconstructed the MRSI data using both proposed and 
SENSE reconstruction schemes with acceleration factors of  
and . In both methods, we adjusted regularizing parameters to 
suppress noise (and aliasing) while not oversmoothing the results.  

Fig. 3 shows the reconstructed NAA peak image (only the 
inner region is shown for better visualization) as well as a sample 
spectrum with different acceleration factors. Improved 
reconstruction results for the proposed scheme especially with 
acceleration factors of  and  is clear. The proposed method 
could retrieve the peak image with more preserved details such as 
edges, and shows less noisy line shapes.  
 
4.2. Human Brain 
We acquired single-average MRSI data of a single slice of a brain 
from a healthy human subject with our MRSI spiral sequence using 
the parameters given in Section 2. 

In both the proposed and SENSE reconstruction schemes, we 
adjusted the regularizing parameters in order to suppress 
measurement noise while not oversmoothing the metabolite peak 
maps.  

Fig. 4 shows the estimated field map and  for the brain 
scan. Here we used  for the brain tissue [9]. As seen in 
this figure, there is strong inhomogeneity in the top region of the 
brain due to proximity to the frontal sinuses. 

In Fig. 5 we depict the peak integral maps for the Cho, Cr, 
and NAA for both reconstruction schemes. Our proposed sparse 
reconstruction method is capable of recovering the signal even in 
areas with high inhomogeneity while it can retrieve details such as 
ventricles in the peak maps. In contrast, the SENSE approach 
shows losses in the top region of the brain and noisy 
reconstructions. In this figure, we also demonstrate the results with 

-fold acceleration. As seen, the proposed approach results in 
similar reconstructions as in the case of full sampling. 

A few spectra at the voxels indicated by the dots are shown in 
Fig. 6. The improved reconstruction using the proposed approach 
leading to less noisy line shapes as well as restoring the spectra in 
the regions with high inhomogeneity is clear in this figure. Note 
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Fig. 4. Left: Estimated field map of the brain data in terms of Hz. 
Right: The estimated  for brain data (unit is ). 



Fig. 5. Reconstructed peak integral maps of the brain metabolites using the
proposed as well as SENSE schemes at acceleration rates of  and .  

 

 Fig. 6. A few spectra at the dotted voxels shown in the anatomy image 
using the proposed approach in top and SENSE reconstruction in bottom of 
the full sampled data. 

that we achieve similar results for two times acceleration. 
 

5. CONCLUSION 
 

In this paper we proposed a novel sparse parallel MRSI 
reconstruction scheme based on a spiral trajectory. Taking 
advantage of the increased SNR offered by a -channel head coil, 
we were able to acquire the MRSI data in about min. We 
proposed a spatial TV reconstruction scheme in which we 
incorporated the estimated system model priors using the water 
reference scan. We also used a dictionary of polynomials and 
spikes in order to achieve sparser spectral MRSI signal for better 
restoration. Our brain in vivo results demonstrated significant 
improvement over the regularized iterative SENSE reconstruction. 
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