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ABSTRACT
We introduce generalized regularization functionals to over-
come the practical problems associated with current total vari-
ation (TV) penalty. Specifically, we extend the TV scheme
to higher order derivatives to improve the representation of
smoothly varying image regions. In addition, we introduce a
rotation invariant anisotropic TV penalty to improve the reg-
ularity of the edge contours. The validation of the scheme
demonstrates the significantly improved performance of the
proposed methods in the context of compressed sensing and
denoising.

1. INTRODUCTION

Total variation (TV) regularization is widely used in denois-
ing and inverse problems. Since its performance is compara-
ble to more sophisticated schemes such as x-lets, it is emerg-
ing as a very popular tool in practical applications. Inspite of
its desirable properties, the TV scheme has some limitations,
which restricts its performance in practical applications. The
main challenge is its poor approximation property. Steidl et.
al has shown that the use of TV for denoising a 1-D signal
is equivalent to approximating the original signal as a non-
uniform spline of degree zero [1]. Clearly, zeroth order rep-
resentations are inefficient in representing smoothly varying
regions, resulting in staircase artifacts and visually unappeal-
ing patchy reconstructions. The use of TV schemes has been
shown to prevent smoothing across the edges, while enhanc-
ing the contours by smoothing along the edges [2]. However,
we observe that the smoothing along strong edge contours are
highly attenuated, resulting in reconstructions with irregular
contours. While anisotropic TV methods have been demon-
strated to provide improved results [3], these schemes are not
rotation invariant, thus resulting in irregular contours.

The main focus of this paper is to introduce novel penalty
functions that can overcome the above limitations, while re-
taining the simplicity and desirable properties of standard
TV schemes. We start by reinterpreting the standard TV
penalty as a group separable L1 norm of the oriented first
order derivatives. Using this novel interpretation, we extend
the regularization functional to higher degree derivatives, thus
improving the ability to accurately recover smoothly varying
image regions. Thanks to the steerability of higher degree
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derivatives, the higher degree schemes have closed form ex-
pressions and efficient algorithms, similar to the standard TV
schemes. The use of these penalties significantly minimizes
the staircasing artifacts and considerably improves the visual
quality in practical applications. To improve the regularity
of the contours, we introduce a novel rotation invariant and
anisotropic TV scheme by formulating the penalty as the
separable L1 norm of the oriented derivatives. Eventhough
the new penalties do not have an analytical expression similar
to standard TV schemes, we introduce efficient majorize-
minimize algorithms that exploit the steerability of the deriva-
tives to solve for the minimizer. We verified the utility of the
new algorithms in practical applications, which indicate a
significant improvement in performance over state of the art
methods. We observe that the improved approximation order
and fidelity of contours translate to better reconstructions.

2. THEORY
We focus on the recovery of an image f : C2 → C from its
finite number of noisy linear measurements b = A (f) + n,
where A is a linear operator and n is Gaussian white noise
of standard deviation σ. The general practice is to pose the
inversion as an optimization problem:

f̂(r) = arg min
f

‖A(f) − b‖2 + λ J (f). (1)

The optimal λ is chosen such that ‖A(f̂) − b‖2 = σ2 and the
regularizer J (f) is a convex functional of f(r). A popular
choice is

J (f) =
∫

r
|∇f(r)| dr,

where ∇f(r) = (fx(r), fy(r)) is the gradient vector. We
will now reinterpret the TV functional as a group separable
L1 norm of the oriented derivatives of f .

Proposition 2.1. The gradient based regularizer, specified by

J (f) =
∫

r
|∇f(r)| dr, (2)

is a group separable penalty of the oriented derivatives of f :
∫

r
|∇f(r)| dr =

∫

R

√
1
π

∫ 2π

0
|fθ,1(r)|2dθ dr, (3)

where fθ,1 is the oriented derivative along uθ = (cos(θ), sin(θ));
(i.e., fθ,1 = ∂

∂γ f(r + γuθ)).



Proof. The first order oriented derivative is rotation steerable:

fθ,1(x) = fx cos(θ) + fy sin(θ). (4)

Substituting for fθ,1 in (3) and integrating, we get
1
π

∫ 2π

0
|fθ,1|2 dθ = |fx|2 + |fy|2 = |∇f |2 (5)

Note from (3) that the TV penalty involves the L1 norm of
‖fθ,1‖L2[0,2π]. Such L1 −L2 penalties are used to exploit the
group structure in the coefficients [4]; this approach promotes
the joint sparsity of the coefficients, combined using the L2

norm. Since the TV penalty promotes the joint sparsity of all
the oriented derivatives, we term this penalty as the isotropic
TV penalty.

2.1. Isotropic higher degree TV (HDTV) penalty

Based on the above re-interpretation, we introduce the isotropic
higher degree TV (HDTV) regularizer as

Jn(f) =
∫

r
‖fθ,n(r)‖L2[0,2π] dr, (6)

where fθ,n(r) is the nth degree oriented derivative of f :

fθ,n = ∂nf(r + γ uθ)/∂γn. (7)

Since the only functions for which all angular derivatives van-
ish are the polynomials of degree n−1, the above functionals
have small kernels. Hence, the use of these operators will
results in well-posed reconstructions. The use of higher de-
gree derivatives will enable the representation of the signal as
piecewise polynomials, thus providing representations with
improved approximation properties. We will now exploit the
rotation steerability of derivative operators to obtain simple
expressions for the regularizer.

The nth order derivatives are steerable [5]:

fθ,n(r) =
n∑

i=0

(
n

i

)
∂nf(r)

∂xi∂yn−i
cos(θ)i sin(θ)n−i (8)

This property enables us to obtain analytical expressions
for the new penalties as in (5). For example, the second
order derivative in a specified orientation can be expressed
as fθ,2(r) = r(θ)Hf2, where f2 = [fxx, fxy, fyy]T and
rθ = [cos(θ)2, 2 sin(θ) cos(θ), sin(θ)2]H . Thus, we obtain
J2(f) =

∫
‖f(r)‖L2[0,2π]dr, where

‖f‖L2[0,2π] =
1
2

√
3f2

xx + 3f2
yy + 4f2

xy + 2% (fxxfyy) (9)

Thus, the HD-TV criterion can be simplified to an analytical
expression involving the nth order partial derivatives, thanks
to the steerability of the derivatives. This enables the devel-
opment of a simple algorithm, discussed in Section 3. The
above expression can also be written as

‖f‖L2[0,2π] =
√

f2(r)H C2 f2(r), (10)

where

C2 =
1
π

∫ 2π

0
r2(θ)r2(θ)Hdθ =

1
4




3 0 1
0 4 0
1 0 3



 (11)

2.2. Anisotropic rotation invariant HDTV penalty

The TV regularization can be considered as a 1-D heat flow
at each spatial point/pixel, orthogonal to the direction of the
gradient [2]. This approach enhances the edges and improves
the regularity of the contours by smoothing orthogonal to the
edges. However, the strength of the smoothing along the
contours is proportional to 1/‖∇f‖, resulting in little or no
smoothing along the contours of strong edges. An anisotropic
version of the TV penalty was introduced in [3] to improve the
contour regularity

J (f) =
∫

R2
|fxx(r)| dr +

∫

R2
|fyy(r)| dr. (12)

The separable nature of the criterion ensures that the penalty
will continue to smooth along vertical direction, even on very
strong horizontal edges and vice-versa [3]. However, the main
drawback of this scheme is the lack of rotation invariance; ro-
tating the image by an arbitrary angle will alter the smoothing
properties.

We introduce a novel rotation invariant anisotropic penalty:

Gn(f) =
1
π

∫

R2

∫ 2π

0
|fθ,n(r)| dθ dr, (13)

to improve the contour regularity. Note that the new crite-
rion is the fully separable L1 norm of the oriented derivatives.
Since this functional is not group separable similar to the stan-
dard TV penalty, a strong singularity along a specific orien-
tation will not reduce the smoothing along other directions.
Unfortunately, the above penalty does not have analytical ex-
pressions, similar to isotropic HDTV regularizer. However,
we will introduce an efficient majorize minimize algorithm to
solve the regularized reconstruction problem.

3. ALGORITHM

We focus on the group separable penalty, before developing
the algorithm for the anisotropic TV.

3.1. Isotropic HDTV

Assuming the mth iteration as fm, we majorize (10) as

J(f) ≤ J (fm) +
∫

r
fn(r)HDm,n(r) fn(r) dr, (14)

where the spatially varying weighting matrix Dm,n(r) =
φm,n(r)Cn. Here, the spatially varying modulating term
φm,n(r)

φm,n(r) = 1/2
√

fn(r)HCn fn(r). (15)

is inversely proportional to the oriented energy at that spec-
ified location (‖fθ,n(r)‖L2[0,2π]): This term is recomputed
at each iteration, denoted by m. The spatial modulation



by φm,n(r) suppresses the regularization in regions with
strong nth order singularities, thus enabling the preservation
of edges/ridges in the image. Assuming fm to be the mth

iteration, we minimize the right hand side of (14)

fm+1(r) = arg min
f

∫

r
fn(r)HDm,n(r)fn(r) dr+λ‖A(f)−b‖2,

(16)
where Dm,n(r) = φm,n(r)Cn. We solve (16) using a sim-
ple conjugate gradients algorithm. The gradient of the above
expression is given by

∇Cm = hn(r)H ∗ Dφm(r) fn(r) + λA∗ (A(f) − b) , (17)

where hn(r) is the M ×1 vector of differential operators. For
example, h2 = [ ∂2

∂xx , ∂2

∂yy , ∂
∂x∂y ]T . Thus the gradient of the

first term is given by

[
∂2

∂xx
,

∂2

∂xy
,

∂2

∂yy

]H

︸ ︷︷ ︸
h(r)H

∗φm(r)
1
4




3 0 1
0 4 0
1 0 3





︸ ︷︷ ︸
C




fxx(r)
fxy(r)
fyy(r)





︸ ︷︷ ︸
fn(r)

.

(18)
The application of this algorithm to the first order TV results
in the standard iterative reweighted TV implementation.

3.2. Anisotropic HDTV

We majorize the anisotropic HDTV penalty as

Gn(f) ≤ Gn(fm) +
1
π

∫

R2

∫ 2π

0
ψm(r, θ) |fθ,n(r)|2 dθ dr,

(19)
where the modulation function is specified by

ψm(r, θ) =
1

2 |fθ,n(r)| . (20)

The angular integral in the second term can be simplified us-
ing the steerability of fθ,n(r) as

ψm(r, θ) |fθ,n(r)|2 dθ = f2(r)H Bm,n(r) f2(r), (21)
where

Bm,n(r) =
1
π

∫ 2π

0
rn(θ) ψm(r, θ) rn(θ)Hdθ (22)

The entries of the matrix Bm,n(r) are modulated depending
on the orientation of the singularity, resulting in anisotropic
smoothing. This approach is very different from the uniform
scaling the entries of C to obtain Dm,n(r) = φm,n(r)C. The
anisotropic scheme computes the entries of Bm,n(r) using
(22); we discretize ψm,n(r, θ) on a uniform angular grid and
evaluate the angular integral as a summation. Once Bm,n(r)
is known, we determine the mth iterate as

fm+1(r) = arg min
f

∫

r
fn(r)HBm,n(r)fn(r) dr+λ‖A(f)−b‖2,

(23)
We solve for the minimum of the above expression using con-
jugate gradients algorithm.

lena peppers MRI MRA
isotropic TV1 21.14 28.86 29.02 30.20

anistropic TV1 21.95 29.51 29.99 30.49
isotropic TV2 20.08 27.78 22.29 26.58

anisotropic TV2 23.02 29.59 26.60 31.30

Table 1. SNRs of the compressed sensing reconstructed images
using different methods. It is observed that the anisotropic TV2 pro-
vides the best reconstructions in most cases, except for the MRI im-
age which is almost piecewise constant.

4. RESULTS

We compare the performance of the novel TV schemes in the
context of two challenging applications: compressed sensing
and denoising. The compressed sensing schemes focus on
the recovery of the images from their Fourier samples, ac-
quired on random locations. We set the acceleration as 6.25
and the SNR of the measurements to be 60 dB. Table 1 in-
dicates the SNRs of several reconstructed images. It is seen
that the anisotropic second order TV provided the best SNR
for all images, except for the brain MRI image; the brain im-
age is almost piecewise constant, which is efficiently captured
by anisotropic first order TV. It is interesting to see that the
anisotropic method provided almost a 1dB improvement in
SNR over the isotropic version in this case. Figs 1 and 2
shows the reconstructed brain MRA and Lena images. Note
that the anisotropic second order TV provides smoother and
more accurate reconstructions, resulting in higher SNR.

We compare the novel TV schemes with several state-of-

(a) original (b) isotropic TV1: 30.20dB

(c) isotropic TV2: 26.58dB (d) anisotropic TV2: 31.30dB

Fig. 1. Comparison of the compressed sensing reconstructions of
an MRA image using several TV schemes. The original reconstruc-
tions are shown in the inset, while zoomed versions are shown in
the main figures. It is seen that the standard TV (isotropic TV1)
distorts the small vessels, while the anisotropic TV2 preserves these
vessels more accurately. The anisotropic version provides a 4.7 dB
improvement over isotropic TV2.



(a) original (b) isotropic TV: 21.14dB

(c) isotropic TV2: 20.08dB (d) anisotropic TV2: 23.02dB

Fig. 2. Comparison of the compressed sensing reconstructions of
Lena image. The full reconstructions are shown in the inset. The sec-
ond order TV schemes preserves the smooth regions and the hairs,
resulting in improved SNR.

the-art denoising methods on six images in Table 2. The pa-
rameters are chosen so that the reconstructed SNR matches
the input SNR. It is seen that the second order anisotropic
TV scheme provides the best reconstructions in almost all the
cases. The images recovered using the different algorithms
are shown in Fig 3 and Fig 4.

(a) noisy: SNR=15dB (b) isotropic TV1: SNR=21.66dB

(c) isotropic TV2: SNR=23.18dB (d) aniso. TV2: SNR=23.59dB

Fig. 3. Comparison of the denoising performance of several TV
schemes on peppers image, corrupted with white Gaussian noise
(SNR=15 dB). It is observed that the standard TV scheme (isotropic
TV1) results in patchy reconstructions. The anisotropic TV2 gives
the best SNR; it is around 2dB better than standard TV.

5. CONCLUSION

We introduced novel families of image regularization func-
tions that provide significantly improved performance over
classical total variation regularized reconstruction schemes.

SNR(dB) 5dB 15dB 30dB 5dB 15dB 30dB 5dB 15dB 30dB
Lena House microtubule

Iso. TV1 15.72 20.47 30.01 18.40 23.83 32.21 13.03 18.50 29.92
Aniso. TV1 15.39 20.28 29.98 17.97 23.36 31.89 12.86 18.10 29.64

Iso. TV2 16.46 22.35 33.67 18.85 24.11 34.29 14.35 20.85 33.51
Aniso. TV2 16.53 22.48 33.77 18.97 24.46 34.49 14.41 20.91 33.61

Curvelet 16.20 21.43 30.80 18.47 24.55 33.26 14.28 20.44 31.15
Surelet 16.29 21.12 31.43 18.72 24.19 33.11 14.37 20.44 31.76

Pepper Cameraman microtubule1
Iso. TV1 16.34 21.66 31.37 16.68 21.55 31.47 14.01 18.89 29.17

Aniso. TV1 15.88 21.20 31.14 16.38 21.36 31.30 13.64 18.52 28.85
Iso. TV2 16.46 23.18 34.41 16.46 22.67 34.40 15.41 21.29 32.83

Aniso. TV2 17.13 23.59 34.57 16.59 22.91 34.56 15.50 21.44 32.89
Curvelet 16.99 22.98 31.93 16.38 21.80 32.19 15.06 20.59 30.53
Surelet 16.85 22.72 32.58 16.59 21.92 32.47 10.81 19.59 31.30

Table 2. SNR of the denoised images, recovered using different
methods.

(a) original (b) noisy: SNR=15dB (c) iso. TV1:18.89dB

(d) anis. TV1:18.52dB (e) iso. TV2:21.29dB (f) anis. TV2:21.44dB

Fig. 4. Comparison of the denoising performance of several TV
schemes on the microtubules image, corrupted with white Gaussian
noise (SNR=15 dB). The anisotropic TV2 gives the best SNR; it is
around 2dB better than standard TV.

We also developed efficient iterative algorithms to solve the
optimization problem, using the steerability of the differen-
tial operators. Experimental results demonstrate the signifi-
cant improvement in performance over standard TV schemes.
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