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10.5.3 Histograms of oriented gradients—HOG
• feature extraction chain that describes local object appearance and shape by

constructing histograms of local intensity gradients
• takes relatively coarse spatial context into consideration and employs a classifier

to detect objects of interest
• locally normalized histograms of oriented gradients or HOGs build on

earlier concepts like edge-oriented histograms [Freeman and Roth, 1995] and
SIFT descriptors

• HOGs utilize a classifier for object localization and recognition
• linear SVMs were used in the original application (upright human detector

[Dalal and Triggs, 2005])
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Figure 10.1: HOG-description chain for object detection and localization. The image
window that is subjected to HOG description is covered by overlapping blocks, in which
HOG features are computed and subsequently sent to a classifier.
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• image region (window) is divided into smaller subregions (cells)
• local 1D histogram of gradient directions or edge orientations is constructed

over all pixels of the cell
• configurations of several cells form blocks (Figure 10.2).

(a) (b) (c) (d)
Figure 10.2: Examples of rectangular and circular blocks of cells that may be used in
HOG descriptors. (a-d) The small squares corresponds to image pixels, each outlined area
of pixels depicts a cell, and the respective configurations of cells give examples of block
definitions.

• specific configuration of adjacent image pixels forms a cell, a specific configura-
tion of cells forms a block, and a number of blocks (possibly overlapping) can
be used to cover the image window using a specific block/overlap grid

• → defining the pixel/cell/block configurations and the block/window grid is
part of the implementation
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• contrast normalization can be employed to gain insensitivity to illumination,
shadowing, and other photometric transformations (Figure 10.1)

• combined histogram entries from an overlapping dense grid of local HOG de-
scriptors form the final HOG description feature vector associated with the
window

• this feature vector is used for classification.
• HOG representation captures edge/gradient structure corresponding to the un-

derlying local shape with controllable insensitivity to rotation and translation
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Algorithm 10.1: HOG object detection and localization (Figure 10.1)
1. Determination of window, cell, block sizes/shapes and overlap.

Based on the image detection task at hand, the size and shape of the im-
age window must be determined (64× 128 windows were used for pedestrian
detection as shown in Figure 10.3; a sufficient margin around the object of in-
terest should be included in the window—a 16-pixel margin was appropriate
in the pedestrian detection case).

Local information is binned in relatively small cells consisting of adja-
cent pixels, and the size and shape of the cells must be determined. Cells
consisting of 6× 6 to 8× 8 pixels (6–8 pixel width corresponds to the width
of a human limb) and organized in rectangular 2× 2 or 3× 3 blocks of cells
were used in the pedestrian detection case. Alternatively, rectangular or
circular blocks (of cells) may be defined. Figure 10.2 shows an example of
rectangular and circular block options, among the many possible block de-
signs. Rectangular cells are primarily used to construct the blocks due to
their computational efficiency. Additionally, the block features are computed
for overlapping blocks and therefore, a grid must be designed to determine
parameters of the overlap.



Chapter 10: Image understanding – HOGs, RFs 6

Global 
photometric

normalization

Computation
of oriented
gradients

Spatial & 
orientation 
histogram

Contrast 
normalization

Computing
HOG 

descriptors

(Linear)
classification & 

object detection

2. Photometric normalization. Global image data normalization and
gamma correction is performed over the entire image. Use of color (multi-
band) image data is recommended when applicable and independent channel-
specific gamma correction is recommended in that case.

3. Computation of oriented gradients. 1D or 2D directional gradient detec-
tors with different levels of image smoothing can be used (higher-D gradient
detectors are foreseeable in volumetric or higher-dimensional images). Most
(if not all) implementations employ a centered local 1D gradient detector
[-1, 0, 1] with no smoothing (σ = 0, it was also reported to work best in the
pedestrian detection case). The 1D gradient detectors are applied vertically
and horizontally, In color images, separate channel–specific image gradients
can be computed and the largest-norm channel-specific gradient used.
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4. Spatial and orientation binning—constructing the histogram. For
each pixel of the analyzed cell, its gradient orientation is used to increment
the respective histogram bin in proportion to the gradient magnitude. To
gain invariance to minor orientation differences, these histogram bin contri-
butions are linearly or bilinearly interpolated between the neighboring bin
centers—each gradient direction thus contributes to several neighboring bins
with interpolated weights. Histogram bins are evenly spaced over the [0o,
180o) interval when working with unsigned gradients or over [0o, 360o) when
gradient orientation is used in addition to direction. Dense directional bin-
ning is important. 20o increments, leading to 9 bins, were shown to give
good results in the pedestrian detection case when unsigned gradients were
used—20o is quite small when dealing with edge direction differences. Signed
gradients were shown appropriate in other applications.
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5. Contrast normalization: To deal with positionally-varying gradient
strengths due to illumination changes and foreground–background contrast
differences, locally-sensed contrast must be normalized. Normalization is
performed in blocks and each block is contrast-normalized separately (see
equations 10.1–10.3 below, Figure 10.4, and [Dalal and Triggs, 2005; Dalal,
2006] for details). Even if individual blocks overlap, each (overlapping) block
is normalized independently.

6. Forming the final HOG descriptor. A vector of components of nor-
malized responses from each cell forming the block, and combined for all
(overlapping) blocks in the detection window forms the final descriptor. The
HOG descriptor is therefore associated with the entire window. The overlap
of blocks allows local image information from individual cells to contribute to
several block-based feature vectors, each of them subjected to a block-specific
normalization, Figure 10.4e.



Chapter 10: Image understanding – HOGs, RFs 9

Global 
photometric

normalization

Computation
of oriented
gradients

Spatial & 
orientation 
histogram

Contrast 
normalization

Computing
HOG 

descriptors

(Linear)
classification & 

object detection

7. Classification: The HOG description vector is used for training and recog-
nition employing any of the available feature-based classifier, working well
with efficient linear classifiers—linear support vector machines performed
very well for the pedestrian detection/localization task [Dalal and Triggs,
2005], Figure 10.4f,g.

8. Object detection. The detection window is moved across the image and
the HOG description vector is obtained for all positions and scales. Non-
maximum suppression is used for object detection and localization in the
multi-scale image pyramid. PASCAL overlap non-maximal suppression is
widely used and is (virtually) parameter-free [Everingham et al., 2010].



Chapter 10: Image understanding – HOGs, RFs 10

Figure 10.3: Example images used for HOG-based pedestrian detection/localization. © 2005
IEEE. Reprinted, with permission, from N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,”
Conference on Computer Vision and Pattern Recognition, pp. 886-893, 2005 A color version of this figure may be seen in the
color inset—Plate 1.

This approach is the most popular and successful person-detection approach in
existence today, including humans in difficult or unusual poses.

Other applications include

• human face detection
• deer detection in thermal camera images to reduce animal–vehicle collisions
• 3D extension to detect regions of interest in medical images
• database image retrieval using hand-drawn shape sketches
• ...
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Contrast normalization:

• contrast normalization schemes can be employed to construct HOG description
features

• ξ — non-normalized vector of histogram features
• ||ξ||k — its k-norm, k = 1, 2
• ε — a small positive constant
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The following normalization schemes were proposed and tested in [Dalal and Triggs,
2005; Dalal, 2006]:

• L2 norm:
ξ → ξ√

||ξ||22 + ε2
. (10.1)

• L2-Hys norm—L2 norm subjected to clipping, thus limiting the maximum to a
pre-specified value—0.2 was shown to be appropriate—followed by an additional
step of re-normalizing as in [Lowe, 2004].

• L1 norm:
ξ → ξ

||ξ||1 + ε
. (10.2)

• L1-sqrt norm—L1 norm followed by square root, thus effectively treating the
descriptor vector as probability distributions:

ξ →

√
ξ

||ξ||1 + ε
. (10.3)

All four presented contrast normalization schemes markedly improve overall per-
formance when compared to no normalization, but the simple L1 norm was least
successful. Low sensitivity to the value of ε was observed.
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(a) (b) (c) (d) (e) (f) (g)
Figure 10.4: A color version of this figure may be seen in the color inset—Plate 2.
Example of HOG features when used for pedestrian detection. The detector is
mostly responding to the pedestrian body contours (e.g., head, shoulders, feet).
(a) Average gradient magnitude image constructed from all training samples.
(b) Maximum positive weights of the SVM classifier, shown associated with

individual blocks (larger and overlapping blocks, positioned at their center pixel).
(c) Maximum negative weights of the SVM classifier. (d) Example test image

window. (e) Rectangular HOG block descriptors from window (d).
(f,g) Rectangular HOG block descriptors from window (d) weighted by positive (f)

and negative (g) SVM weights. The linear SVM classifier correctly identifies
window (d) as depicting a pedestrian. © 2005 IEEE. Reprinted, with permission, from N. Dalal and B.

Triggs, “Histograms of oriented gradients for human detection,” Conference on Computer Vision and Pattern

Recognition, pp. 886-893, 2005
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Notable properties:

• highly local gradients and their orientations, derived from non-smoothed images
at fine scales, thus representing local abrupt edges, outperform features derived
from smoothed image information

• the gradient orientation should be sampled quite finely
• spatial smoothing—applied after the local edge detection and performed at

small blocks—can be relatively coarse
• local contrast normalization is essential for good performance and multiple inde-

pendent local contrast normalizations can be combined in the overall descriptor—
offering information redundancy that improves performance
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10.8 Image understanding using random forests
• RFs for image analysis and understanding for multi-class object detection
• simultaneous use of classification and regression capabilities
• RFs require large training datasets to be available and their generalization ca-

pabilities are not suited for small training datasets
• size of the training dataset is the single most important parameter influencing

random forest performance
• highly successful commercial use of RFs — Microsoft Kinect for XBox

– trained on 900,000 examples of depth image data
– recognizing 31 separate human body parts of a human being
– in virtually any position and orientation

• massive training requires substantial time to complete
• training a random forest consisting of merely three trees to a depth of 20 re-

quired one full day using a 1000 node cluster [Shotton et al., 2011]
• → body part detection runs at a frame rate of 200 frames per second on commer-

cial 2013 CPU/GPU hardware taking advantage of the natural parallelization
of the recognition process
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Specifics of RFs for image analysis:
• RF classification capability used for object recognition (RFs well suited for

many-class recognition)
• RF regression capability predicts object location

• image is divided into patches of pre-determined size
– training set: each object of class ωi is outlined by its bounding box
– image patches falling within the bounding box are associated with a respec-

tive class label
– for a patch to ‘fall within’ the box, either the entire patch or its center must

be inside of the bounding box
– not requiring the entire patch to be located inside the object box permits

better sampling of the object boundary information and is especially useful
for tight bounding boxes

– remaining non-object patches of the image form background and are asso-
ciated with a background label
—of course, no bounding boxes are used to outline background

– patches may but do not have to be densely sampled
– for each patch, a set of features is calculated

—low-level features such as color, gradients, Gabor filter indices, and similar
are frequently used since they can be computed efficiently
—alternatively, SIFT or SURF sparse features can be employed
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• to inject randomness to the process, each tree Tt of the forest uses a randomly
selected subset At of image patches for training
– if an image patch is associated with an object label, an additional piece of

information may be associated with each patch
—for example, the distance from and orientation to a reference point of the
training object may be associated with each training patch
this reference point may be class-specific or a center of the bounding box
may be used for simplicity

• ... intuitively clear that recognizing an object patch as belonging to a specific
object class and determining distance from and direction to its reference point
may help recognize (classification) as well as locate (regression) the object in
the recognition stage

... Notice a similarity with the Hough transform in which individual image
features (usually edges) contribute to identification of an object instance in the
accumulator space

... the exact definition of the reference point is of secondary importance as long
as it is defined consistently across all training samples.
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Figure 10.5: Detection and localization of cars in outdoor scenes. Image patches associated
with the ‘car’ class are shown in red, and those denoting background are shown in blue.
Green vectors connect centers of individual non-background patches with a car-object
reference point. With kind permission from Springer Science+Business Media: Outdoor and Large-Scale Real-
World Scene Analysis, “An introduction to random forests for multi-class object detection,” 2012, pp. 243-263, J. Gall,
N. Razavi, and L. Gool A color version of this figure may be seen in the color inset—Plate 3.

• scale considerations are addressed during the recognition stage — therefore all
image patches are all of the same size

• patch size of 16×16 was shown appropriate for images that have been previously
scaled so that the length of the bounding box outlining the object is about 100
pixels [Gall and Lempitsky, 2009]

• Figure 10.5 shows examples of object and background image patches that are
sized according to these recommendations
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• tree-specific training set At consists of a set of patches Pi, which hold image,
patch class information, and its relative location:

Pi = [Ii, ωi,di] , (10.4)

where Ii holds the patch image information (e.g., as a set of calculated features),
ωi is the patch class label, and di is an offset vector from the patch center to
the reference point

• background patches are not associated with any reference point, a pseudo-offset
of di = 0 is used
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• each tree is trained in parallel
• class probability and class-specific distribution of training patches need to be

learned from the training set and associated with each leaf L from the set of all
leaves, forming leaf-specific prediction models

• leaf-specific class probability p(ωr|L) can be derived from AL
t,ωr

—the number
of patches of class ωr that arrive at leaf L of tree Tt after training, normalized
to account for uneven distribution of classes in the training set of patches:

p(ωr|L) =
|AL

t,ωr
| · bt,ωr∑

r=1,...,R(|AL
t,ωr
| · bt,ωr

)
, (10.5)

bt,ωr
= |At|
|At,ωr |

, (10.6)

where At is the entire set used to train tree Tt and At,ωr
is a set of all patches

in At belonging to class ωr and R is the number of classes.
• class-specific spatial distribution of patches p(d|ωr, L) is derived from the off-

sets d ∈ DL
ωr

of all patches AL
t,ωr

, where DL
ωr

is the set of offsets associated with
patches of class ωr reaching node L

• Figure 10.6 shows examples of leaf-specific statistics of trees for detection of
cars in images from Figure 10.5
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(a) (b)

(c) (d)
Figure 10.6: Information contained in several samples of tree leaves in car detection with a
random forest (see Figure 10.5). Probabilities p(ωr|L) that patches reach a specific tree leaf
L are stored for each leaf and result from the relative numbers of positive (red) and negative
(blue) examples that reach the leaf during training. The end-points of all offset vectors d
are shown as green crosses for all positive examples (all negative examples have d = 0).
(a,c) The distribution of vectors d is frequently multimodal, showing correspondence of
the positive patches with multiple object parts. (b) The wheel patches may be associated
with either the front or the rear wheels. (d) The tree leaf associated with this panel only
contains negative patches. © 2011 IEEE. Reprinted, with permission, from Gall, J., Yao, A., Razavi, N., Van
Gool, L., Lempitsky, V., “Hough forests for object detection, tracking, and action recognition,” IEEE Trans. Pattern
Anal. Machine Intell, vol. 33, pp. 2188-2202, IEEE, 2011 A color version of this figure may be seen in the color inset—Plate 4.
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Detection stage:

• patches are densely sampled on previously unseen images
• and evaluated in each node of each tree forming the forest

—starting at their roots to be sent to one of the two child nodes until they
reach a tree leaf

• each patch P (y),
where y denotes patch image location,
eventually ends up in one of the tree leaves Lt(y) per tree Tt

• to detect and localize an object in the image, contributions from multiple
patches are considered and the patch configuration needs to point to a suffi-
ciently consistent reference point x, which then represents the location of the
identified object

• probabilities of object-class-and-location hypotheses ht(ωr,x, s) need to be com-
puted for
– each tree Tt

– each class ωr

– each reference point location x
– each object scaling factor s
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• for any patch located at y
—single-tree probability that a patch P (y) is associated with an object labeled
ωr at reference point x is calculated as [Gall et al., 2011]:

p(ht(ωr,x, s)|Lt(y)) = p(d(x,y, s)|ωr, Lt(y))p(ωr|Lt(y)) , (10.7)

where
d(x,y, s) = su(y− x)

s
. (10.8)

su represents the unit size of the training-object bounding box that is known
from training

• probabilities p(d(x,y, s)|ωr, Lt(y)) and p(ωr|Lt(y)) are known from training as
explained above (see also equation 10.5)

• distribution p(ht(ωr,x, s)|Lt(y)) combines both the classification and regression
aspects of the object detection and localization task
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• as suggested earlier, a voting approach can be employed to approximate the
distributions p(d(x,y, s)|ωr, Lt(y))
– let the distance vectors d associated with class ωr and patch locations y

that reached leaf Lt in tree Tt form a set DLt(y)
ωr

– equation (10.7) can be rewritten as

p(ht(ωr,x, s)|Lt(y)) = 1
|DLt(y)

ωr |

 ∑
d∈D

Lt(y)
ωr

δd ·
(
su(y− x)

s

) p(ωr|Lt(y)) ,

(10.9)
where δ is a Dirac delta function

• Equations (10.7–10.9) give the probabilities for a single tree
• Figure 10.7 further demonstrates the approach
• alternatively, distributions can be approximated using Gaussian mixture models
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(a) (b) (c) (d)
Figure 10.7: Pedestrian detection and localization using a random forest. (a) Three kinds
of image patches are shown—head patch (red), foot patch (blue), background patch (green)
(arrows). (b) Weighted votes of pedestrian’s position, color coded with respect to which
patch class contributes to a specific reference point location (equation 10.9). While the
head patch class forms a single strong mode of possible reference point location (red), the
foot patch class obtains similar responses from the left and right feet (blue), subsequently
forming a two-mode response. A weak set of green responses (green arrow) with no clear
mode(s) is associated with background patches. Here, the low probability of a background
class to belong to the pedestrian object contributes to the low weights and overall weak
response from background. (c) Accumulation of votes from all patches (equation 10.11
employed at one scale s)—a single strong mode emerges. (d) Pedestrian detection shown
as a bounding box derived from the detected location of the reference point. © 2011 IEEE.
Reprinted, with permission, from Gall, J., Yao, A., Razavi, N., Van Gool, L., Lempitsky, V., “Hough forests for object
detection, tracking, and action recognition,” IEEE Trans. Pattern Anal. Machine Intell, vol. 33, pp. 2188-2202, IEEE,
2011 A color version of this figure may be seen in the color inset—Plate 5.



10.8 Image understanding using random forests 26

• using an across-tree averaging approach, a forest-based probability can be ob-
tained

p(h(ωr,x, s)|P (y)) = 1
T

∑
t

p(ht(ωr,x, s)|Lt(y)) . (10.10)

• using this forest-level probability, distribution over all patches and all trees
results from accumulation

p(h(ωr,x, s)|I) = 1
|Y|

∑
y∈Y

p(ht(ωr,x, s)|P (y)) , (10.11)

where I refers to the entire image and Y is the set of all patch locations y.

• applied to the image of Figure 10.7a at one scale, this equation yields a single
strong mode shown in Figure 10.7c
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• processing an image at multiple scales is demonstrated in Figure 10.8
• to detect an object of scale s considering that the training objects were all scaled

to a training size of su, each image needs to be scaled at su/s

• if all images are scaled at all feasible scaling levels prior to being analyzed, the
training-introduced scaling is already accounted for (equation 10.8) and object
detection via identification of strong modes of equation (10.11) can be efficiently
accomplished by employing mean shift mode detection
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(a) (b) (c) (d) (e)
(f)

Figure 10.8: Objects are detected at multiple scales. (a) Two cars are marked in the
original image, each located at a different distance from the observer. (b–f) Cars can be
detected at multiple scales and locations by searching for modal maxima in the joint scale–
location space. The larger car produces modal responses in panels (b–d) with a maximal
modal peak associated with scale shown in panel (c). Similarly, the smaller car shows
modal responses in panels (e–f) with a maximum shown in panel (e). With kind permission from
Springer Science+Business Media: Outdoor and Large-Scale Real-World Scene Analysis, “An introduction to random
forests for multi-class object detection,” 2012, pp. 243-263, J. Gall, N. Razavi, and L. Gool A color version of this figure
may be seen in the color inset—Plate 6.
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Figure 10.9: Employing random forests in Microsoft Kinect for XBox. (a) Original depth
image (640× 480 pixels), brightness corresponds to depth. (b) Color-coded ground truth
for 31 body parts. (c) Reference point x′ associated with a patch at location x. A. Criminisi,
J. Shotton, and E. Konukoglu, Decision Forests for Classfication, Regression, Density Estimation, Manifold Learning and
Semi-Supervised Learning. Microsoft Research technical report TR-2011-114. © 2012 Microsoft Corporation. All rights
reserved A color version of this figure may be seen in the color inset—Plate 7.
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(a)

(b)
Figure 10.10: Examples of training and testing images with associated ground truth.
(a) Training data consisted of a combination of real and synthetic depth datasets. (b) Real
examples were used for testing. © 2011 IEEE. Reprinted, with permission, from Shotton J., Fitzgibbon A.,
Cook M., Sharp T., Finocchio M., Moore R., Kipman A., and Blake A., “Real-time human pose recognition in parts from
single depth images,” Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference, pp. 1297-1304, 2011
A color version of this figure may be seen in the color inset—Plate 8.
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Figure 10.11: Body parts are detected and localized in 3D. © 2011 IEEE. Reprinted, with permission,
from Shotton J., Fitzgibbon A., Cook M., Sharp T., Finocchio M., Moore R., Kipman A., and Blake A., “Real-time
human pose recognition in parts from single depth images,” Computer Vision and Pattern Recognition (CVPR), 2011
IEEE Conference, pp. 1297-1304, 2011 A color version of this figure may be seen in the color inset—Plate 9.
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Figure 10.12: Application of random forests to 3D kidney detection and localization from
abdominal X-ray CT images. (a) Distance vector between the center of a 3D patch and the
reference point associated with a 3D kidney location is shown. (b–e) Example detections
of kidneys show robustness of performance across subject-specific anatomical differences.
Random-forest detections are shown in red while independent standard is in blue. A.
Criminisi, J. Shotton, and E. Konukoglu, Decision Forests for Classfication, Regression, Density Estimation, Manifold
Learning and Semi-Supervised Learning. Microsoft Research technical report TR-2011-114. © 2012 Microsoft Corporation.
All rights reserved A color version of this figure may be seen in the color inset—Plate 9.
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Extensions:

• Many applications have emerged that use the random forest approach.
• Figures 10.9–10.11 show body part detection/localization from depth image

data used in Microsoft Kinect for XBox [Shotton et al., 2011]
– depth images consisting of 640 × 480 pixels are acquired at 30 frames per

second at a depth-resolution of a few centimeters (Figure 10.9)
– images are used to identify R = 31 body parts to which each image pixel

belongs:

ωr ∈ {left/right hand, left/right shoulder, left/right elbow, neck, etc.} .
(10.12)

– Figure 10.10 shows examples of training and testing data

– single-pixel image patches at location x are associated with depth-based
features fu,v(I,x)

fu,v(I,x) = dI

(
x · u

dI(x)

)
− dI

(
x · v

dI(x)

)
, (10.13)

where dI(x) is depth at pixel x in image I
u and v are two vectors representing two positional offsets with respect to
x
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– these offsets therefore allow depth at x to be simultaneously compared with
depth at x + u and depth at x + v, with u and v being parameters of this
neighborhood depth comparison

– normalization factor 1/dI(x) yields depth invariance of features and there-
fore 3D world coordinate invariance

– these features together with pixel-based class information are used for train-
ing a random forest, which in the image analysis stage assigns one of the
32 labels to each image pixel (31 body part classes and background).
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• To obtain information about 3D positions of skeletal joints, the per-pixel infor-
mation about body part labels must be pooled across pixels (for example) to
find 3D centroids of all pixels with the same label.

• This approach however suffers from noise sensitivity and a mean-shift Gaussian-
kernel weighted mode-finding approach was employed in the Kinect.

• Figure 10.11 demonstrates how three-dimensional information about the per-
ceived body pose and location is provided by the described process.

• Random forests are also finding applications in medical imaging.
• For example, whole-body segmentation of anatomical structures from 3D CT

or MR image data and automatic detection of presence/absence of individual
structures has been reported in [Criminisi et al., 2010].

• Figure 10.12 demonstrates robustness of 3D kidney detection across subjects
with natural anatomic variations.
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