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Adaboost Approach to Detection of Motion Patterns

• image-based and motion-based information are used simultaneously

• detection of short-term motion patterns rather than on tracking over extended
periods of time

• closely related to the Adaboost object detection

• pedestrian motion

• small set of simple rectangle filters trained on a set of examples

• multiscale

• filters work with short temporal image sequences
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• motion detected as temporal differences in corresponding image blocks

• size of blocks — analysis scale

• blocks of different sizes

• computational efficiency

• motion direction derived from differences between shifted image blocks

• shift by ψ pixels – defined with respect to detection scale

• image frame acquired at time t, t+ δt
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• Five highly relevant

∆ = abs(It − It+1) ,

U = abs(It − It+δt ↑) ,
D = abs(It − It+δt ↓) ,
L = abs(It − It+δt ←) ,

R = abs(It − It+δt →) ,

(16.37)

(a) It (b) It+δt (c) ∆ (d) U (e) D (f) L (g) R

Figure 16.12: Motion and appearance difference images derived according to equation
(16.37). Image R has the lowest energy and as such, corresponds to the right-to-left
direction of motion.
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Filters fk measure magnitude of motion

fk = rk(S) (16.38)

Several filter types ...
fi = ri(∆)− ri(S) (16.39)

... likelihood that region is moving in a tested direction ↑, ↓,←, or →

S is one of the difference images {U,D,L,R}

ri is a single rectangle sum within the detection window.
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Motion shear can be determined using filters

fj = φj(S) (16.40)

Filters fm ... detecting image patterns of expected static image properties

fm = φ(It) (16.41)

• filters f• – from integral image

• filters f• can be of any size, aspect ratio, or position
(as long as they fit in image block)

• large number of filters

• best subset ... to separate moving objects with motion-specific proper-
ties from the rest of the image
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• Classifier C – linear combination of selected features

• after AdaBoost training phase – thresholded sum of features

C(It, It+δt) = 1 if

N
∑

s=1

Fs

(

It, It+δt

)

> θ ,

= 0 otherwise.

(16.42)
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• Feature Fs – thresholded image

Fs(It, It+δt) = α if fs(It, It+δt,∆, U,D,L,R) > ts ,

= β otherwise,
(16.43)

• ts ∈ R is a feature threshold

• fs is one of filters f•

• N features fs are selected using AdaBoost process from all considered filters

• these filters are a function of one or more parameters It, It+δt,∆, U,D,L, and/or
R
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• α, β, ts, and θ – computed during the AdaBoost training process

• each of N rounds chooses from the full set of motion and appearance features

• → a mix of features balancing the appearance and motion descriptors is selected
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• motion-invariant detection of object motion speed is achieved via different shifts
ψ

• obtained during training – scaling all training samples to a pre-determined base
resolution (i.e., bounding block size with respect to the pixel counts in the x
and y directions)

• e.g., base resolution of 20 × 15 pixels was used by Viola/Jones

• multi-scale behavior achieved by operating on image pyramids

∆l = abs(I l
t − I l

t+1) ,

U l = abs(I l
t − I l

t+δt ↑) ,
Dl = abs(I l

t − I l
t+δt ↓) ,

Ll = abs(I l
t − I l

t+δt ←) ,

Rl = abs(I l
t − I l

t+δt →) ,

(16.44)

• l ... pyramid level

• features computed from the pyramidal representations in a scale-invariant fash-
ion

• scale factor of 0.8 for successive pyramid levels shown to work – all the way
down to the pre-determined size of the base-resolution image block (20 × 15
pixels in the discussed case).
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• Once features selected, a boosted cascade of classifiers

• Simple classifiers with high detection rates and relatively high false positive
rates are employed in early stages

• More complex classifiers using larger numbers of features are used in the later
cascade stages

• Each stage of the cascade attempts to reduce both the detection and the false
positive rates

• → goal of reducing false positive rate more rapidly than detection rate
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• Example application – pedestrians walking

• sequences of 2,000 frames

• Each of the cascade classifiers trained on 2,250 positive and 2,250 negative
examples

• each example – two 20 × 15 image windows from two consecutive image frames
(δt = 1)

• positive examples – scaled bounding boxes of pedestrians

• negative examples – no pedestrians

• feature selection – 54,624 filters
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Figure 16.13: The first 5 features identified
by the feature selection process for detecting
walking pedestrians. The features reflect that
the pedestrians were centered in the training
images, tend to be different from the back-
ground, and four of them use the motion-
difference images. (Adapted from Viola03.)

• motion information was crucial for the achieved performance

• dynamic pedestrian detector clearly outperformed the static pedestrian detector
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Figure 16.14: Example results of pedestrian detection using the dynamic pedestrian de-
tector. Courtesy of P. Viola, Microsoft Live Labs and M. Jones, Mitsubishi Electric Research

Labs, ©2003 IEEE [?].


