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Syntactic Pattern Recognition 
 
In many cases, statistical pattern recognition does not 
offer good performance because statistical features do not 
(and cannot) represent sufficient information that is 
needed. 
 
In SYNTPR, structure is paramount. 
 
Classification may be based on measures of pattern 
structural similarity 
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Quantifying Structure 
 
- Formal Grammars 
- Relational Descriptions (Graphs) 
 
Syntactic Recognition 
 
- Parsing  (formal grammars) 
- Relational graph matching  
   (Attributed relational graphs) 
 
 
Hirerarchical Approaches 
 
Often, SYNTPR techniques are hierarchical ... 
decomposition of complex patterns into simpler patterns - 
example: written language. 
 
 



Sonka: Pattern Recognition Class 3

 
Grammar-Based Approaches (Formal grammars) 
 
String grammars: 
 Linear strings of terminal symbols (terminals) 
 
Definitions and Conventions 
 
Alphabet V 
 
 V = {a,b,c,...,z} 
 
Concatenation a•b produces a sequence ab 
 
String over V    
  - a single symbol  
  - concatenation of zero or more symbols 
 
Length of string s  |s| 
 
String x = aaaa ,,, a = an 

 
Empty string e  |e| = 0 
 
    e•x = x•e = x 
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Set of strings of length 2  
 
    V•V = V2 
    V•V•V = V3 
 
   V+ = V ∪ V2 ∪ V3 ∪ ... 
 
V+ ... set of all nonempty strings producible using V 
 
adding the empty string: 
 
   V* = {e} ∪ V+ 
 
V* is the closure (set) of V 
 
V+ is the positive closure of V 
 
(Obviously, strings may be infinite.) 
 
Cardinality of V* is often infinite 
 
  | V* | = ∞ 
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Grammars and Languages 
 
Grammars give meaning to a subset of strings 
 
    L ⊆ V* 
 
L is language 
 
Union, Concatenation, Iterates, Substrings 
 
Union: 
   L1 ∪ L2 = { s | s ∈ L1 or s ∈ L2 } 
 
Concatenation 
   L1 • L2 = {s | s=s1s2 where s1 ∈ L1, s2 ∈ L2 } 
 
Iterate of L1 
   L1

iterate = {s | s1s2...sn, n≥0, si ∈ L1} 
 
Substring 
   y is substring of x, x,y ∈ V*  if u,v ∈ V* 
and 
    x = u y v 
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Grammars 
 
Grammar G is a four-tuple 
 
  G = {VT, VN, P, S} 
 
where 
 
VT set of terminal symbols (primitives) 
  the choice of VT is art not science 
 
VN set of nonterminal symbols (variables) 
 VT, VN are disjoint ... VT ∩ VN = ∅ 
 
P set of rules (production rules, productions,  
     rewriting rules) 
 
S starting symbol (root), S ∈ VN 
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Rule constrains 
 
Rules may be constrained to the form: 
   
     A  B 
where 
  A ∈ (VT ∪ VN)+ - VT

+ 

and 
  B ∈ (VT ∪ VN)* 
 
A must consist of at least one member of VN and B can 
consist of any combination of terminals and nonterminals 
 
This is a partial definition of  
 
  Phrase Structure Grammar 
 
Grammar Application Modes 
 
1. Generative mode 
 Grammar creates strings of terminal symbols  
 using P 
 
2. Analytic mode 
 Given a string and specification of G, determine  
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whether 
 a) the string was generated by G 
 b) if yes, determine the structure of the string 
 
 
Number of possible string patterns 
 
Any subset L ⊆ VT* is a language 
 
If |L| is finite ... finite language 
 using entire VT*, language is infinite 
 
To limit the number of possible strings, only the strings 
generated by some grammar will be considered 
 
Language generated by grammar G ... L(G) 
 
 each string consists of terminals from VT of G 
 each string was produced from S using P of G 
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Grammar Types and Production Rules 
 
Notation: 
 nonterminals upper case  S, T, ... 
 terminals  lower case  a,b, ... 
 length of string δ    n= |δ| 
 Greek letters strings   α, β, ... 
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Types of string grammars (Chomsky 1957) 
 
General production rule 
 
  α → β  string α is replaced with string β 
 
Type 0: T0 (Free or Unrestricted Grammars) 
 
 no restrictions on the rewriting rules 
 little practical significance 
 erasing rules allowed ...  
   constraint |α| < |β| does not exist 
 
Type 1: T1 (Context-Sensitive Grammars), CSG 
 
 Restrictions: 
     β ≠ e 
 and 
     |α| <= |β| 
 
Thus, the rules are restricted to the form: 
   
  ααiβ → αβiβ 
  αi replaces βi in the context of α, β,  
  α, β may equal e
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Type 2: T2 (Context-Free Grammars), CFG 
 
Restrictions 
 
   α = S  ∈ VN 
       single nonterminal 
 
   |S| <= |β| 
 
Alternatively: 
 
 every rule must be of the form 
 
   S  β 
      a nonterminal can be replaced  
      with a string consisting of  
      terminals and nonterminals 
 
 
- CFG are most descriptively versatile grammars for 
which effective parsers are available 
 
- Production rule restriction increased compared to T1 
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Type 3: T3 (Finite State or Regular Grammars) FSG 
 
Restrictions: 
 
 same as for T2  plus  
  at most one nonterminal symbol is allowed  
  on each side of the rule 
 
   α = S ∈ VN 
 
   |S| <= |β| 
 
and 
 
   A  a      OR      A1  aA2 
 
The above are the only allowed production rule forms, 
 
  a must be nonempty 
 
Graphical Representations of FSGs 
 
nodes ...  nonterminals, node T is the terminal node 
 
arc from Ai to Aj      exists for each rule Ai  aAj 
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arc from Ai to T      exists for each rule Ai  a 
 

 out-degree of T is 0, in-degree of S is 0 
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Derivations and Productions 
 
Rewriting rules   ” “ allowable replacement, 
       or production 
 
Derivation ... conversion of one string to another 
     “ “ 
 
 
Equivalence of Grammars 
 
Two grammars G1 and G2 are equivalent  
 iff   
   L(G1) = L(G2) 
 
Algorithms to determine equivalence exist for FSGs 
 
A general algorithm to determine equivalence does not 
exist for CFGs 
 
 
However, 
 two non-equivalent grammars may generate  
identical strings 
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Examples of RULES: 
 
CFG: 
 S  aAa 
 A  a 
 A  b 
 
 
FSG: 
 S  a A1 
 S  b A1 
 A1  a 
 A1  b 
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  There is no unique naming of blocks 
1.  There is always four blocks 
2.  The bottom of a stack must reside on the table 

Let’s develop grammars G2 and G3 to describe the  
2-block and 3-block cases 

Note the context-sensitive nature of G3 
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Syntactic Recognition via Parsing 
 
We know how to generate syntactic description using 
formal grammars 
 
Now, let’s inverse the problem, assume that we have the 
syntactic description and the objective is to determine 
which L(Gi) the string s belongs to ... which class it 
belongs to. 
 
 
 
 
String Matching 
 
For finite languages, it is possible to generate the entire 
language, compare individual strings with the string s. 
 
Problems ... even if language is finite, it is usually large, 
the matching is inefficient 
 
Metrics must account for similarity of primitives AND 
similarity in structure   
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Parsing 
 
Is the pattern syntactically well formed in the context of 
one or more prespecified grammars. 
 
Parser = syntactic analyzer 
 
Parsers are usually associated with grammar types. 
The more restrictive the grammar type, the simpler parser 
can be used. 
 
Special case of Context-Free Grammar  ...   
  Chomsky normal form  CNF 
 
A CFG is in CNF if each element of P is in one of the 
following forms 
 
  A  BC  where A,B,C ∈ VN 
   
  A  a    where A ∈ VN, a ∈ VT 

 
Lemma: 
 
For any CFG, there exists an equivalent CNF. 
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Parsing 
 
- Parser may have hierarchical structure to be more 
efficient 
 
- Decomposition in subparts 
 
The Derivation Tree 
 
Example: 
G1 ={VT, VN, P, S} 
 
VT = {the, program, crashes, computer} 
VN = {SENTENCE,ADJ,NP,VP,NOUN,VERB} 
P = { 
  SENTENCE  NP + VP, 
 NP  ADJ + NOUN 
 VP  VERB + NP 
 NOUN  computer|program 
 VERB  crashes 
 ADJ  the  } 
S = SENTENCE 
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Generation using grammars: 
 
A. the program crashes the computer 
B. the program crashes the program 
C. the computer crashes the program 
D. the computer crashes the computer
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Case C … Derivation Tree 

 



Sonka: Pattern Recognition Class 33

Parsing Problem - an abstract view: 
grammar: 
 G ={VT, VN, P, S} 
 
Filling the interior of the derivation tree triangle. 
 
If successful, we determined that x ∈ L(G).  
 
Filling from the top ... Top-down approach 
  from the bottom  ... Bottom-up approach 
 
Bottom up parsing   from the terminals toward S 
 
Top down parsing   from S toward the terminals 
 
Parsing/Generation similarities 
Generative mode is substantially easier 
 
Parser  - must determine the extent of nonterminals 
  - must find use for all elements (all must be   
  used) 
 
Parsing complexity 
 often a high-complexity problem 
 using a priori information helps tremendously
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The Decidability Problem 
 
Given L(G) and string x, the question is: 
 
      ? 
  x ∈ L(G) 
 
If this question can be answered in finite time, the parsing 
problem is fully decidable. 
 
 
Comparing Parsing Approaches 
 
- difficult 
 
- for some grammars, top-down is better  
- for other grammars, bottom-up is better. 
 
- transformation or normalization of grammar may affect 
parsing efficiency 
 
Brute force approaches (top down and bottom up) have 
often exponential complexity - exponentially grows with 
|x|. 
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CYK ... Cocke Younger Kasami Parsing Algorithm 
 
parsing in |x|3 steps 
 
working with context-free grammars CFG  
    in Chomsky normal form CNF 
 
CNF: 
 productions either   A  BC 
    or  A  a 
 
Thus, derivation of any string ... series of binary 
decisions 
 
Grammar: 
 
S  AB | BB 
A   CC | AB | a 
B  BB | CA | b 
C   BA | AA | b 
 
Construction of a CYK parse table: 
start from location (1,1), if a substring of x, beginning 
with xi and of length j can be derived from a nonterminal, 
this nonterminal is placed in (i,j). 
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Augmented Transition Networks (ATNs) in Parsing 

 
Transition network (TN) is a digraph (directed graph) 
showing context free production rules of a grammar 
 
Easily maps into finite state machines 
 
TN:  set of nodes ... states 
  set of labeled arcs ... nonterminals or terminals 
 
TN parses an input string by starting with an initial state 
(S) and checking for allowed transitions until the goal is 
reached = until a successful parse is found. 
 
Goal states are labeled END or double circled. 
 
Parsing is done by consuming the input string 
 
An arc may be traveled under one of the following 
conditions: 
1) the arc is labeled with a terminal node and the next 
entry in the input string is the same terminal.  
This terminal will be consumed 



Sonka: Pattern Recognition Class 38

2) The arc is labeled with a nonterminal. In this case, 
control passes to one or more TNs related to this 
nonterminal. 
 
If the parser reaches a state (node) where no outgoing arc 
is applicable, a failure is encountered. 
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Augmented TNs ... ATNs 
 
adding several features, especially recursion 
 
- conditional tests, 
- corresponding actions (jump to another ATN under 
 certain condition, etc.) 
 
Higher Dimensional Grammars 
 
facilitate relational descriptions 
 
rewriting rules are more complex 
 
Popular:  
 tree grammars 
 web grammars 
 
Note:  
no correlation between dimensionality of the problem and 
dimensionality of the grammar 
 
Tree Grammars 
 
useful for hierarchical decompositions 
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Traversing a Tree 

 
Depth-first 
Breadth-first 
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Tree Similarity 
 
Similarity measure ... for 2 trees T1, T2, 
similarity is denoted d(T1,T2) using string descriptions of 
the corresponding trees 
 
  
 
 
Tree grammars 
 
conceptually identical to chain grammars, more complex 
rules due to more freedom in replacements 
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Stochastic Grammars 
 
Formal grammars assumed that languages generated by 
two grammars were disjoint, however it is rarely the case. 
 
It was not presented how to incorporate a priori 
information about likelihood of classes 
 
Stochastic grammar is a four-tuple 
 
  Gs = {VT, VN, Ps, Ss} 
 
production rules are of the form: 
 
   pij 
  ai          bj 
 
where pij is a probability that ai is replaced with bj 

 
Thus, several rules with the same left side can be present 
in the stochastic grammar 
 
Sum of all probabilities for such rules = 1 
 
If ≠ 1, the grammar is called fuzzy. 
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Learning via Grammatical Inference 
 
So far, we assumed that grammars were defined. 
 
If grammars are defined by the designer of the 
SYNTPR system, then no training is needed. 
 
More realistic situation ... grammars are not 
known. 
 
Learning process of inferring grammars from a 
training set of examples ... grammatical inference 
(GI). 
 
GI is a supervised learning approach. 
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Syntactic Learning 
 
!!! No unique relationship between a given 
language and some grammar. 
 
Thus, the same language may be generated by 
several different grammars  
 
... which of the several grammars will be learned as 
a result of GI? 
 
Additional constraints are applied to the learned 
grammar. 
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How to characterize the grammar source ψ ? 
 

 
 
Training set 
Goal: use training set H to learn the grammar Glearn 
which is “close” to the grammar G we look for. 
 
Positive examples S+ 

Negative examples S- 

 

Training Set  H = {S+, S-} 
     S+  = {x(i) | x(i) ∈ L(G) } 
     S-   = {¬x(i) | ¬x(i) ∉ L(G) } 
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In other words, goal is to 
 
 - develop a grammar Glearn  that can generate  
  S+, but not S- 
 
Even better ... 
 
 - develop a grammar that in addition can  
 represent properties of the training set  
  - inductive character of learning 
 
Example: 
 
S+ = {ab, aabb, aaabbb, aaaabbbb} 
  
it would be nice to expect that aaaaabbbbb will 
also belong to the language 
 
⇒ include production rules  
   
    A → ab,  A → aAb 
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Cardinality of S+ 

 

L(G) is usually infinite but S+ is always finite 
 
  S+ ⊆ L(G) 
 
  |S+| << |L(G)| 
Also 
  S- ⊆ ¬L(G) 
 
  |S-| << |¬L(G)| 
 
Since a finite sample does not uniquely define a 
language, such finite sample may be associated 
with an infinite number of languages. 
 
⇒ Inferring a unique grammar is impossible. 
 
Quality of the training set 
 
S+ must be structurally complete ... all production 
rules of the grammar must be reflected in S+.  
 
How to guarantee this ??? 
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It is known that using only S+ makes grammar 
inference undecidable and it is true even for 
regular grammars. 
 
Even if S- is used, problem is still NP hard. 
 
Heuristics must be used to ensure computational 
feasibility. 
 
GI objectives 
 
1)  
Specify the class of grammar, or request that the 
inferred grammar is of minimal complexity 
 
2)  
Create Glearn such that it generates all strings from 
S+ and no strings from S-. Require (this is difficult) 
that Glearn also generates strings similar to those 
from S+ (and not from S-). 
 
3) Require that the inference algorithm is of 
reasonable computational complexity = 
requirement of usage of heuristics. 
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Intuitive GI procedure 
 
S+, S- given 
 
G(0) ... the initial guess about grammar G  
 
 G(0) = {VT

(0), VN
(0), P(0), S(0)} 

 
Procedure 
 
1)  set k = 0 
 
2) choose one element x(i) from S+, using G(k), 
parse x(i), if parse is successful, continue, otherwise 
modify G(k).  
 
3) choose one element ¬x(i) from S-, using G(k), 
parse x(i), if parse is not successful, continue, 
otherwise modify G(k). 
 
4) If all elements from H were successfully 
parsed, stop. Otherwise, increment k and continue 
with step (2). 
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Problems: 
 
A) How to modify G(k)  ? 
B) modifications in each step lead to 
combinatorial explosion. 
Grammar inference - more realistic approach 
 
Let’s restrict the grammar to finite state (regular) 
... single strings.  
 
Therefore, rules are only of type: 
 
  A → a     and     A → aB 
 
Example: 
 
x(i) ∈ S+ , x(i) = caaab 
 
We can derive the first guess of VT and VN 
 
  VT = { a,b,c} 
 
and 
  
  VN = { S, A, B} 
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Production rules derived: 
 
  S → cA       1 
  A → aB      2 
  B → aC      3 
  C → aD      4 
  D → b       5 
 
Obviously, the fact that we have a new non-
terminal for each rule will result in an excessive 
number of rules for large sample sizes and/or long 
strings. 
 
However, rules 2,3,4 are quite similar and can be 
combined to reduce redundancy. 
 
Is this set of rules identical? 
  S → cA       1 
  A → aA      2 

A → b       3 
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General procedure 
 
1) for all x(i) ∈ S+ , determine the set of distinct 
terminals, construct VT. 
 
2) for each x(i) ∈ S+, define the corresponding set 
of productions by considering the string from left 
to right, construct VN and P. 
 

This approach (same as in Example above)  
yields a language L(Gc) = S+. 
 
However, redundancies exist. 
 
Also, L(Gc) is finite. 
 

3)  merge production rules to produce a recursive 
grammar and a corresponding infinite language. 
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Example: 
 
S+ = {bbaab, caab, bbab, cab, bbb, cb} 
 
 … VT = { a,b,c } 
 
left to right inferring of rules: 
 S → bA 
 A → bB 
 B → b 
 B →aC 
 S → cD 
 C → b 
 C → aE 
 E  → b 
 D → b 
 D → aF 
 F → aG 
 F → b 
 G → b 
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rules are similar B,C,D,E,F,G  same rule 
and 
rules are similar B,C,D,F ... same nonterminal 
 
⇒ S → bA1 | cA2 
 A1 → bA2 
 A2 → aA2 | b 
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Graphical approaches to SYNTPR 
 
Graph matching - especially for higher-
dimensional graphs - replaces parsers 
 
Graph similarity assessment becomes important 
 
Digraphs → Semantic Nets → Relational graphs 
 
Graph:  G = {N,R} 
 
N ... set of nodes 
R ... set of arcs  R ∈ N × N 
 
Semantic net   each node has a label 
 
Relational graph arcs represent relations   
     = relations have a label 
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Graphs and Pattern Recognition 
 
- each pattern is represented by a graph and graphs 
are compared 
 
- as usually, reality is more difficult than this 
straightforward concept - match is rarely absolute 
in complex graphs, and even if it is, computational 
expense is high 
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Comparing Relational Graph Descriptions 
 
Scenario 1 (conservative): 
any feature or relation not present in both graphs 
results in a match failure 
 
Scenario 2 (optimistic): 
any single match of feature or relation yields 
success 
 
Scenario 3 (realistic): 
somewhere in between 
 
 
Why bother with graph matching - we have 
developed grammatical approach, parsers, 
grammatical inference, etc.? 
 
Graph matching is advantageous  
 
- when the training set is too small to correctly 
infer the grammar 
 
- when each pattern can be considered a class 
prototype 
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Node properties invariant under graph isomorphism 
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Matching Measures that Allow Structural 
Deformations 
- we need a “distance” measure reflecting graph 
similarity 
 
1) Extraction of features from G1 and G2 forming 
two feature vectors; followed by StatPR 
recognition using the feature vectors.  
 
2) metric ... the minimum number of 
transformations necessary to transform G1 to G2 
 
transformations:  
 node insertion 
 node deletion 
 node splitting 
 node merging 
 etc. 
 
difficulties: 
 computational complexity 
 difficult to design an adequate distance  
  measure to assess different graphs from  
  the same class as similar and from  
  different classes as dissimilar 
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Double Subgraph Isomorphism 
 
Can be converted into a subgraph isomorphism 
using the assignment graph 
 
A pair v1, v2 is called an assignment if the nodes 
v1, v2 have the same node property descriptions, 
and two assignments v1, v2 and v’1, v’2 are 
compatible  if (in addition) all relations between v1 
and v’1, also hold for v2 and v’2 (graph arcs 
between v1 and v’1 and v2 and v’2 must have the 
same evaluation, including the no-edge case). 
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Template and Springs Principle 
 
 

 


