
Sonka: Pattern Recognition Class 1

Syntactic Pattern Recognition

In many cases, statistical pattern recognition does not
offer good performance because statistical features do not
(and cannot) represent sufficient information that is
needed.

In SYNTPR, structure is paramount.

Classification may be based on measures of pattern
structural similarity

Sonka: Pattern Recognition Class 2

Quantifying Structure

- Formal Grammars
- Relational Descriptions (Graphs)

Syntactic Recognition

- Parsing (formal grammars)
- Relational graph matching
 (Attributed relational graphs)

Hirerarchical Approaches

Often, SYNTPR techniques are hierarchical ...
decomposition of complex patterns into simpler patterns -
example: written language.

Sonka: Pattern Recognition Class 3

Grammar-Based Approaches (Formal grammars)

String grammars:
 Linear strings of terminal symbols (terminals)

Definitions and Conventions

Alphabet V

 V = {a,b,c,...,z}

Concatenation a•b produces a sequence ab

String over V
 - a single symbol
 - concatenation of zero or more symbols

Length of string s |s|

String x = aaaa ,,, a = an

Empty string e |e| = 0

 e•x = x•e = x

Sonka: Pattern Recognition Class 4

Set of strings of length 2

 V•V = V2
 V•V•V = V3

 V+ = V ∪ V2 ∪ V3 ∪ ...

V+ ... set of all nonempty strings producible using V

adding the empty string:

 V* = {e} ∪ V+

V* is the closure (set) of V

V+ is the positive closure of V

(Obviously, strings may be infinite.)

Cardinality of V* is often infinite

 | V* | = ∞

Sonka: Pattern Recognition Class 5

Grammars and Languages

Grammars give meaning to a subset of strings

 L ⊆ V*

L is language

Union, Concatenation, Iterates, Substrings

Union:
 L1 ∪ L2 = { s | s ∈ L1 or s ∈ L2 }

Concatenation
 L1 • L2 = {s | s=s1s2 where s1 ∈ L1, s2 ∈ L2 }

Iterate of L1
 L1

iterate = {s | s1s2...sn, n≥0, si ∈ L1}

Substring
 y is substring of x, x,y ∈ V* if u,v ∈ V*
and
 x = u y v

Sonka: Pattern Recognition Class 6

Grammars

Grammar G is a four-tuple

 G = {VT, VN, P, S}

where

VT set of terminal symbols (primitives)
 the choice of VT is art not science

VN set of nonterminal symbols (variables)
 VT, VN are disjoint ... VT ∩ VN = ∅

P set of rules (production rules, productions,
 rewriting rules)

S starting symbol (root), S ∈ VN

Sonka: Pattern Recognition Class 7

Sonka: Pattern Recognition Class 8

Sonka: Pattern Recognition Class 9

Rule constrains

Rules may be constrained to the form:

 A B
where
 A ∈ (VT ∪ VN)+ - VT

+

and
 B ∈ (VT ∪ VN)*

A must consist of at least one member of VN and B can
consist of any combination of terminals and nonterminals

This is a partial definition of

 Phrase Structure Grammar

Grammar Application Modes

1. Generative mode
 Grammar creates strings of terminal symbols
 using P

2. Analytic mode
 Given a string and specification of G, determine

Sonka: Pattern Recognition Class 10

whether
 a) the string was generated by G
 b) if yes, determine the structure of the string

Number of possible string patterns

Any subset L ⊆ VT* is a language

If |L| is finite ... finite language
 using entire VT*, language is infinite

To limit the number of possible strings, only the strings
generated by some grammar will be considered

Language generated by grammar G ... L(G)

 each string consists of terminals from VT of G
 each string was produced from S using P of G

Sonka: Pattern Recognition Class 11

Grammar Types and Production Rules

Notation:
 nonterminals upper case S, T, ...
 terminals lower case a,b, ...
 length of string δ n= |δ|
 Greek letters strings α, β, ...

Sonka: Pattern Recognition Class 12

Types of string grammars (Chomsky 1957)

General production rule

 α → β string α is replaced with string β

Type 0: T0 (Free or Unrestricted Grammars)

 no restrictions on the rewriting rules
 little practical significance
 erasing rules allowed ...
 constraint |α| < |β| does not exist

Type 1: T1 (Context-Sensitive Grammars), CSG

 Restrictions:
 β ≠ e
 and
 |α| <= |β|

Thus, the rules are restricted to the form:

 ααiβ → αβiβ
 αi replaces βi in the context of α, β,
 α, β may equal e

Sonka: Pattern Recognition Class 13

Type 2: T2 (Context-Free Grammars), CFG

Restrictions

 α = S ∈ VN
 single nonterminal

 |S| <= |β|

Alternatively:

 every rule must be of the form

 S β
 a nonterminal can be replaced
 with a string consisting of
 terminals and nonterminals

- CFG are most descriptively versatile grammars for
which effective parsers are available

- Production rule restriction increased compared to T1

Sonka: Pattern Recognition Class 14

Type 3: T3 (Finite State or Regular Grammars) FSG

Restrictions:

 same as for T2 plus
 at most one nonterminal symbol is allowed
 on each side of the rule

 α = S ∈ VN

 |S| <= |β|

and

 A a OR A1 aA2

The above are the only allowed production rule forms,

 a must be nonempty

Graphical Representations of FSGs

nodes ... nonterminals, node T is the terminal node

arc from Ai to Aj exists for each rule Ai aAj

Sonka: Pattern Recognition Class 15

arc from Ai to T exists for each rule Ai a

 out-degree of T is 0, in-degree of S is 0

Sonka: Pattern Recognition Class 16

Sonka: Pattern Recognition Class 17

Sonka: Pattern Recognition Class 18

Derivations and Productions

Rewriting rules ” “ allowable replacement,
 or production

Derivation ... conversion of one string to another
 “ “

Equivalence of Grammars

Two grammars G1 and G2 are equivalent
 iff
 L(G1) = L(G2)

Algorithms to determine equivalence exist for FSGs

A general algorithm to determine equivalence does not
exist for CFGs

However,
 two non-equivalent grammars may generate
identical strings

Sonka: Pattern Recognition Class 19

Examples of RULES:

CFG:
 S aAa
 A a
 A b

FSG:
 S a A1
 S b A1
 A1 a
 A1 b

Sonka: Pattern Recognition Class 20

Sonka: Pattern Recognition Class 21

Sonka: Pattern Recognition Class 22

Sonka: Pattern Recognition Class 23

Sonka: Pattern Recognition Class 24

Sonka: Pattern Recognition Class 25

 There is no unique naming of blocks
1. There is always four blocks
2. The bottom of a stack must reside on the table

Let’s develop grammars G2 and G3 to describe the
2-block and 3-block cases

Note the context-sensitive nature of G3

Sonka: Pattern Recognition Class 26

Sonka: Pattern Recognition Class 27

Sonka: Pattern Recognition Class 28

Syntactic Recognition via Parsing

We know how to generate syntactic description using
formal grammars

Now, let’s inverse the problem, assume that we have the
syntactic description and the objective is to determine
which L(Gi) the string s belongs to ... which class it
belongs to.

String Matching

For finite languages, it is possible to generate the entire
language, compare individual strings with the string s.

Problems ... even if language is finite, it is usually large,
the matching is inefficient

Metrics must account for similarity of primitives AND
similarity in structure

Sonka: Pattern Recognition Class 29

Parsing

Is the pattern syntactically well formed in the context of
one or more prespecified grammars.

Parser = syntactic analyzer

Parsers are usually associated with grammar types.
The more restrictive the grammar type, the simpler parser
can be used.

Special case of Context-Free Grammar ...
 Chomsky normal form CNF

A CFG is in CNF if each element of P is in one of the
following forms

 A BC where A,B,C ∈ VN

 A a where A ∈ VN, a ∈ VT

Lemma:

For any CFG, there exists an equivalent CNF.

Sonka: Pattern Recognition Class 30

Parsing

- Parser may have hierarchical structure to be more
efficient

- Decomposition in subparts

The Derivation Tree

Example:
G1 ={VT, VN, P, S}

VT = {the, program, crashes, computer}
VN = {SENTENCE,ADJ,NP,VP,NOUN,VERB}
P = {
 SENTENCE NP + VP,
 NP ADJ + NOUN
 VP VERB + NP
 NOUN computer|program
 VERB crashes
 ADJ the }
S = SENTENCE

Sonka: Pattern Recognition Class 31

Generation using grammars:

A. the program crashes the computer
B. the program crashes the program
C. the computer crashes the program
D. the computer crashes the computer

Sonka: Pattern Recognition Class 32

Case C … Derivation Tree

Sonka: Pattern Recognition Class 33

Parsing Problem - an abstract view:
grammar:
 G ={VT, VN, P, S}

Filling the interior of the derivation tree triangle.

If successful, we determined that x ∈ L(G).

Filling from the top ... Top-down approach
 from the bottom ... Bottom-up approach

Bottom up parsing from the terminals toward S

Top down parsing from S toward the terminals

Parsing/Generation similarities
Generative mode is substantially easier

Parser - must determine the extent of nonterminals
 - must find use for all elements (all must be
 used)

Parsing complexity
 often a high-complexity problem
 using a priori information helps tremendously

Sonka: Pattern Recognition Class 34

The Decidability Problem

Given L(G) and string x, the question is:

 ?
 x ∈ L(G)

If this question can be answered in finite time, the parsing
problem is fully decidable.

Comparing Parsing Approaches

- difficult

- for some grammars, top-down is better
- for other grammars, bottom-up is better.

- transformation or normalization of grammar may affect
parsing efficiency

Brute force approaches (top down and bottom up) have
often exponential complexity - exponentially grows with
|x|.

Sonka: Pattern Recognition Class 35

CYK ... Cocke Younger Kasami Parsing Algorithm

parsing in |x|3 steps

working with context-free grammars CFG
 in Chomsky normal form CNF

CNF:
 productions either A BC
 or A a

Thus, derivation of any string ... series of binary
decisions

Grammar:

S AB | BB
A CC | AB | a
B BB | CA | b
C BA | AA | b

Construction of a CYK parse table:
start from location (1,1), if a substring of x, beginning
with xi and of length j can be derived from a nonterminal,
this nonterminal is placed in (i,j).

Sonka: Pattern Recognition Class 36

Sonka: Pattern Recognition Class 37

Augmented Transition Networks (ATNs) in Parsing

Transition network (TN) is a digraph (directed graph)
showing context free production rules of a grammar

Easily maps into finite state machines

TN: set of nodes ... states
 set of labeled arcs ... nonterminals or terminals

TN parses an input string by starting with an initial state
(S) and checking for allowed transitions until the goal is
reached = until a successful parse is found.

Goal states are labeled END or double circled.

Parsing is done by consuming the input string

An arc may be traveled under one of the following
conditions:
1) the arc is labeled with a terminal node and the next
entry in the input string is the same terminal.
This terminal will be consumed

Sonka: Pattern Recognition Class 38

2) The arc is labeled with a nonterminal. In this case,
control passes to one or more TNs related to this
nonterminal.

If the parser reaches a state (node) where no outgoing arc
is applicable, a failure is encountered.

Sonka: Pattern Recognition Class 39

Sonka: Pattern Recognition Class 40

Augmented TNs ... ATNs

adding several features, especially recursion

- conditional tests,
- corresponding actions (jump to another ATN under
 certain condition, etc.)

Higher Dimensional Grammars

facilitate relational descriptions

rewriting rules are more complex

Popular:
 tree grammars
 web grammars

Note:
no correlation between dimensionality of the problem and
dimensionality of the grammar

Tree Grammars

useful for hierarchical decompositions

Sonka: Pattern Recognition Class 41

Sonka: Pattern Recognition Class 42

Traversing a Tree

Depth-first
Breadth-first

Sonka: Pattern Recognition Class 43

Tree Similarity

Similarity measure ... for 2 trees T1, T2,
similarity is denoted d(T1,T2) using string descriptions of
the corresponding trees

Tree grammars

conceptually identical to chain grammars, more complex
rules due to more freedom in replacements

Sonka: Pattern Recognition Class 44

Stochastic Grammars

Formal grammars assumed that languages generated by
two grammars were disjoint, however it is rarely the case.

It was not presented how to incorporate a priori
information about likelihood of classes

Stochastic grammar is a four-tuple

 Gs = {VT, VN, Ps, Ss}

production rules are of the form:

 pij
 ai bj

where pij is a probability that ai is replaced with bj

Thus, several rules with the same left side can be present
in the stochastic grammar

Sum of all probabilities for such rules = 1

If ≠ 1, the grammar is called fuzzy.

Sonka: Pattern Recognition Class 45

Learning via Grammatical Inference

So far, we assumed that grammars were defined.

If grammars are defined by the designer of the
SYNTPR system, then no training is needed.

More realistic situation ... grammars are not
known.

Learning process of inferring grammars from a
training set of examples ... grammatical inference
(GI).

GI is a supervised learning approach.

Sonka: Pattern Recognition Class 46

Syntactic Learning

!!! No unique relationship between a given
language and some grammar.

Thus, the same language may be generated by
several different grammars

... which of the several grammars will be learned as
a result of GI?

Additional constraints are applied to the learned
grammar.

Sonka: Pattern Recognition Class 47

How to characterize the grammar source ψ ?

Training set
Goal: use training set H to learn the grammar Glearn
which is “close” to the grammar G we look for.

Positive examples S+

Negative examples S-

Training Set H = {S+, S-}
 S+ = {x(i) | x(i) ∈ L(G) }
 S- = {¬x(i) | ¬x(i) ∉ L(G) }

Sonka: Pattern Recognition Class 48

In other words, goal is to

 - develop a grammar Glearn that can generate
 S+, but not S-

Even better ...

 - develop a grammar that in addition can
 represent properties of the training set
 - inductive character of learning

Example:

S+ = {ab, aabb, aaabbb, aaaabbbb}

it would be nice to expect that aaaaabbbbb will
also belong to the language

⇒ include production rules

 A → ab, A → aAb

Sonka: Pattern Recognition Class 49

Cardinality of S+

L(G) is usually infinite but S+ is always finite

 S+ ⊆ L(G)

 |S+| << |L(G)|
Also
 S- ⊆ ¬L(G)

 |S-| << |¬L(G)|

Since a finite sample does not uniquely define a
language, such finite sample may be associated
with an infinite number of languages.

⇒ Inferring a unique grammar is impossible.

Quality of the training set

S+ must be structurally complete ... all production
rules of the grammar must be reflected in S+.

How to guarantee this ???

Sonka: Pattern Recognition Class 50

It is known that using only S+ makes grammar
inference undecidable and it is true even for
regular grammars.

Even if S- is used, problem is still NP hard.

Heuristics must be used to ensure computational
feasibility.

GI objectives

1)
Specify the class of grammar, or request that the
inferred grammar is of minimal complexity

2)
Create Glearn such that it generates all strings from
S+ and no strings from S-. Require (this is difficult)
that Glearn also generates strings similar to those
from S+ (and not from S-).

3) Require that the inference algorithm is of
reasonable computational complexity =
requirement of usage of heuristics.

Sonka: Pattern Recognition Class 51

Intuitive GI procedure

S+, S- given

G(0) ... the initial guess about grammar G

 G(0) = {VT

(0), VN
(0), P(0), S(0)}

Procedure

1) set k = 0

2) choose one element x(i) from S+, using G(k),
parse x(i), if parse is successful, continue, otherwise
modify G(k).

3) choose one element ¬x(i) from S-, using G(k),
parse x(i), if parse is not successful, continue,
otherwise modify G(k).

4) If all elements from H were successfully
parsed, stop. Otherwise, increment k and continue
with step (2).

Sonka: Pattern Recognition Class 52

Problems:

A) How to modify G(k) ?
B) modifications in each step lead to
combinatorial explosion.
Grammar inference - more realistic approach

Let’s restrict the grammar to finite state (regular)
... single strings.

Therefore, rules are only of type:

 A → a and A → aB

Example:

x(i) ∈ S+ , x(i) = caaab

We can derive the first guess of VT and VN

 VT = { a,b,c}

and

 VN = { S, A, B}

Sonka: Pattern Recognition Class 53

Production rules derived:

 S → cA 1
 A → aB 2
 B → aC 3
 C → aD 4
 D → b 5

Obviously, the fact that we have a new non-
terminal for each rule will result in an excessive
number of rules for large sample sizes and/or long
strings.

However, rules 2,3,4 are quite similar and can be
combined to reduce redundancy.

Is this set of rules identical?
 S → cA 1
 A → aA 2

A → b 3

Sonka: Pattern Recognition Class 54

General procedure

1) for all x(i) ∈ S+ , determine the set of distinct
terminals, construct VT.

2) for each x(i) ∈ S+, define the corresponding set
of productions by considering the string from left
to right, construct VN and P.

This approach (same as in Example above)
yields a language L(Gc) = S+.

However, redundancies exist.

Also, L(Gc) is finite.

3) merge production rules to produce a recursive
grammar and a corresponding infinite language.

Sonka: Pattern Recognition Class 55

Example:

S+ = {bbaab, caab, bbab, cab, bbb, cb}

 … VT = { a,b,c }

left to right inferring of rules:
 S → bA
 A → bB
 B → b
 B →aC
 S → cD
 C → b
 C → aE
 E → b
 D → b
 D → aF
 F → aG
 F → b
 G → b

Sonka: Pattern Recognition Class 56

rules are similar B,C,D,E,F,G same rule
and
rules are similar B,C,D,F ... same nonterminal

⇒ S → bA1 | cA2
 A1 → bA2
 A2 → aA2 | b

Sonka: Pattern Recognition Class 57

Graphical approaches to SYNTPR

Graph matching - especially for higher-
dimensional graphs - replaces parsers

Graph similarity assessment becomes important

Digraphs → Semantic Nets → Relational graphs

Graph: G = {N,R}

N ... set of nodes
R ... set of arcs R ∈ N × N

Semantic net each node has a label

Relational graph arcs represent relations
 = relations have a label

Sonka: Pattern Recognition Class 58

Graphs and Pattern Recognition

- each pattern is represented by a graph and graphs
are compared

- as usually, reality is more difficult than this
straightforward concept - match is rarely absolute
in complex graphs, and even if it is, computational
expense is high

Sonka: Pattern Recognition Class 59

Comparing Relational Graph Descriptions

Scenario 1 (conservative):
any feature or relation not present in both graphs
results in a match failure

Scenario 2 (optimistic):
any single match of feature or relation yields
success

Scenario 3 (realistic):
somewhere in between

Why bother with graph matching - we have
developed grammatical approach, parsers,
grammatical inference, etc.?

Graph matching is advantageous

- when the training set is too small to correctly
infer the grammar

- when each pattern can be considered a class
prototype

Sonka: Pattern Recognition Class 60

Sonka: Pattern Recognition Class 61

Node properties invariant under graph isomorphism

Sonka: Pattern Recognition Class 62

Sonka: Pattern Recognition Class 63

Sonka: Pattern Recognition Class 64

Matching Measures that Allow Structural
Deformations
- we need a “distance” measure reflecting graph
similarity

1) Extraction of features from G1 and G2 forming
two feature vectors; followed by StatPR
recognition using the feature vectors.

2) metric ... the minimum number of
transformations necessary to transform G1 to G2

transformations:
 node insertion
 node deletion
 node splitting
 node merging
 etc.

difficulties:
 computational complexity
 difficult to design an adequate distance
 measure to assess different graphs from
 the same class as similar and from
 different classes as dissimilar

Sonka: Pattern Recognition Class 65

Double Subgraph Isomorphism

Can be converted into a subgraph isomorphism
using the assignment graph

A pair v1, v2 is called an assignment if the nodes
v1, v2 have the same node property descriptions,
and two assignments v1, v2 and v’1, v’2 are
compatible if (in addition) all relations between v1
and v’1, also hold for v2 and v’2 (graph arcs
between v1 and v’1 and v2 and v’2 must have the
same evaluation, including the no-edge case).

Sonka: Pattern Recognition Class 66

Sonka: Pattern Recognition Class 67

Template and Springs Principle

