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Medical Imaging and Medical Imaging and 
AnalysisAnalysis

o X-ray

o CT

o MR

o PET

o SPECT

o Ultrasound

vMedical imaging revolutionized 
diagnosing, treatment, and surgical 
interventions. 

vMedical image analysis is still mostly 
performed visually, off-line, and has a 
qualitative character. 

v Highly automated quantitative 
analysis is needed 



Calgary 3

Active Appearance Model Active Appearance Model 
Based SegmentationBased Segmentation

l Goals:
– Development of a robust segmentation technique based 

on shape and appearance
– Single approach to variety of medical image analysis 

problems via machine learning
– Native analysis in 2D, 2D+time, 3D, 4D
– Validation in large groups of subjects
– Application to cardiac MR, cardiac echo, liver tumor 

resection surgery planning, …
– Direct computer-aided diagnosis of disease status
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Medical Areas of InterestMedical Areas of Interest
v Quantitative assessment of left-ventricular (LV) 

and right-ventricular (RV) function 
v Quantitative analysis of stress echocardiographic 

images
v Quantitative LV analysis is possible in MR -

MASS package (Leiden University) based on 
optimal graph searching

v Fails in non-standard cases,  no reliable RV 
segmentation exists

v No reliable Echo segmentation exists
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Cardiac MRICardiac MRI
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Cardiac MRICardiac MRI
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Modeling of ShapeModeling of Shape
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Point Distribution ModelsPoint Distribution Models
l represent the shape borders of objects as a 

collection of corresponding points
l demo of basic steps ...
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l Compute the average shape

l Computing the modes of variation. 

– Compute a covariance matrix

Point Distribution ModelsPoint Distribution Models
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• Modes of covariance matrix variation can be 
determined via eigen-decomposition of the 
covariance matrix.

Principal Component Analysis creates a more compact 
basis function from a multi-dimensional set of data where 
the mean is at the origin.

The result is a PDM model of shapes
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Modeling AppearanceModeling Appearance
l The appearance of an object can be 

described by its shape and texture
l Shape is represented by landmark points
l Texture is represented by pixel intensities
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Warping the images to the mean shape
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The mean shape and mean gray level
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Active Appearance ModelsActive Appearance Models
– each example can be expressed by two vectors

– bs and bg can be concatenated and PCA applied

– apply a PCA to all concatenated b-vectors
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Variation 1 Variation 3Variation 2

Average
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Matching AAM’sMatching AAM’s
l Matching an AAM to an image requires:

– a criterion function e:
l the RMS error of the ‘difference image’ between the 

model and the underlying image patch

– a minimization procedure (Levenberg Marquardt / simplex)

– derivatives of the criterion function with respect to 
all ‘optimizable’ parameters 
l can be estimated using multiple linear regression
l examples of derivative images
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ResultsResults

Calgary 18

ProblemsProblems
v Appearance matching may lock on incorrect 

features and get stuck in a local minimum
v This is a problem for quantitative analysis
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Arguments for a hybrid modelArguments for a hybrid model

vConventional AAM better suited for 
appearance matching than for accurate 
border detection - local structures and 
boundary information are not specifically 
considered

vLocal border properties are considered in  
Active Shape Models

v Hybrid ASM/AAM matching
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Hybrid ASM/AAMHybrid ASM/AAM
v ASM’s shape/pose de-coupled  from AAM in each 

iteration
v ASM and AAM matching steps are performed 

independently
v Resulting AAM and ASM shape/pose parameters 

are combined using weighted averaging after each 
iteration

v The refined AAM reflects the combined shape and 
current appearance
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Combined AAM & ASM FittingCombined AAM & ASM Fitting
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vHough Transform determines LV centers
vAAM matching till convergence
vASM/AAM matching till convergence 

(typically 3-5 iterations)
vAAM matching initialized with mean 

appearance and most recent shape
v Several initial orientations used to achieve 

sufficiently good match.  

Fully Automated Segmentation Fully Automated Segmentation 
of Cardiac MR Imagesof Cardiac MR Images
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RMS Error FunctionRMS Error Function

~1 sec
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Fully Automated Segmentation Fully Automated Segmentation 
of Cardiac MR Imagesof Cardiac MR Images

Original images - varying patient position, large field of view
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Complete Hybrid Complete Hybrid 
ASM/AAM SegmentationASM/AAM Segmentation

Conventional AAM                    Hybrid AAM
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Experimental MethodsExperimental Methods

v Training set 102 images (11 patients and 23 
normals); testing set 60 images (9 patients and 11 
healthy subjects), completely disjoint

v Patients suffered from various pathologies such as 
hypertrophic obstructive cardiomyopathy, 
myocardial infarction or LV aneurysm.

v Three end-diastolic, mid-ventricular slices were 
selected per sample.

v Independent standard was manually traced
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Validation IndicesValidation Indices
v Border positioning errors (signed average, RMS, 

max)
v Area measurements (LV, RV, EPI)
v Computer-determined results compared with 

observer-defined independent standard
v Regression analysis used for area measurements
v Bland-Altman statistic used to compare area 

measures
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ResultsResults

vMethod never failed in the testing set
vAll contours were visually pleasing
vNo manual initialization
vNo manual correction

v Signed border positioning errors 
< 0.2±2.2 pixel
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ResultsResults Original

Manual Hybrid AAM
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ResultsResults Original

Manual Hybrid AAM
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ResultsResults
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Area ComparisonsArea Comparisons

v N=54
v Slopes not different from 1  

v for LV, RV (p=NS), p=0.03 for EPI
v Intercepts not different from 0 

v for LV, RV, EPI (p=NS)
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LogLog--loglog
Bland AltmanBland Altman
v Minimal bias 

v LV: -0.4%
v RV: -0.6%
v EPI: -0.2%

v 95% measurements within 
v LV: -8 — +8%
v RV: -17 — +19%
v EPI: -8 — +8%

v RV results worse than LV 
and EPI - caused by
v ambiguities in training set
v task difficulty

LV

RV

EPI
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AAM vs. Hybrid AAMAAM vs. Hybrid AAM

v Our multistage hybrid AAM method 
significantly outperformed the conventional 
AAM approach at the significance level of 
p<0.001 as assessed by comparison of 
unsigned border positioning errors in the 
testing set. 

v Demo of a 2D + time
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2D + Time Stress Echo2D + Time Stress Echo

Demo … R>T
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Experiments and ResultsExperiments and Results
l 129 unselected infarct patients (72 training + 57 testing) 
l Endocardial percent area error … -3.1 ± 10.3% 
l Mean signed area ejection fraction errors 0.6 ± 5.5% 



Calgary 38

ThreeThree--dimensional AAMdimensional AAM

Problems of extension to 3D:

l Point Correspondence
l Even if landmark points are easily 

identifiable, specifying uniquely 
corresponding points in-between landmarks 
is difficult in 3D.

l Aligning Shapes Three Dimensionally

l Three Dimensional Warping
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33--D Point CorrespondenceD Point Correspondence
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3D AAM3D AAM
TrainingTraining

Average shape

• Procrustes alignment and
tetrahedral representation

• 3D PDM (using PCA)
• 3D warping
• 3D appearance model (PCA)
• 3D AAM – combined 

shape and appearance
(PCA)

è no algorithmic difference 
from 2D

è increased computational 
complexity

Tetrahedral representation
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Shape Aligning in 3Shape Aligning in 3--DD

l Shape alignment in 2-D AAMs utilized Procrustes 
Analysis.

l 3-D Procrustes Analysis requires a quaternion 
representation of pose.
l Rotation is represented as a unit vector and 

rotational twist
l Euclidian Rotations may result in singularities 

known as gimbal-lock.
l Shape alignment uses procedure by Besl et al.
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ThreeThree--dimensional AAMdimensional AAM

l In general it is an extension of 2D + time
l Point correspondence remains a problem 
l Model construction: 

• Instead of Delaney triangulation, LV is explicitly defined 
by hand as a set of tetrahedrons – doing it once for 
training set

• Quaternion representation used for 3D objects (common 
in computer graphics)

• 3D warping implemented using Barycentric coordinates 
(center of gravity of triangles)
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3D AAM Segmentation Process3D AAM Segmentation Process
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ResultsResults
Leave-one-out study of 53 volumetric MR images 

comparing automated and manual volumes.

Endocardial Epicardial Myocardial 
volume volume mass
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3D3D--AAM … AAM … 
unsolved problemsunsolved problems

l Model lacks resolution in the z-direction 
affecting the ability of the model to extend to 
the apex and base in many segmentations

l Point correspondence still a difficult problem 
in developing new models.

l The model is dependent on the set of 
samples.
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Volumetric CT … Liver + Tumor
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Image Analysis

CT Slice Stack

Radiological
Knowledge

Segmentation

liver
segmentation

tumor
segmentation

liver
partitioning

vascular tree
segmentation
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Proposed Solution …  Proposed Solution …  
Sequential SegmentationSequential Segmentation

1  Middle lobe of right lung
2  Quadrate lobe liver
3  Left lobe of liver
4  Diaphragm
5  Heart
6  Upper lobe of the left lung

1

2 3
4

5
6
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Ground Truth
Diaphragm

Impact of Diaphragm Segmentation
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3D Shape Representation 3D Shape Representation ––
Elevation ImageElevation Image

Axial Axial 
reference reference 
planeplane

Z∆

Elevation image describes dome shape
Conversion of a 3D problem to 2½ D
Landmark placement using 2D grid
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3D Shape Representation 3D Shape Representation ––
2D Reference Curve2D Reference Curve

2D reference 2D reference 
curvecurve

Key landmark Key landmark 
pointpoint

Landmark Landmark 
pointpoint
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3D Shape Modeling3D Shape Modeling

xxbPxx +=

hhbPhh +=

Reference curve model:Reference curve model:

Elevation image model:Elevation image model:

ll The shape models are linked via a The shape models are linked via a 
warping function warping function 

l Fringe (extension of the shape)
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3D Appearance Representation 3D Appearance Representation 

3D Shape3D Shape Texture LayersTexture Layers

– Warping all layers to the mean reference curve 
shape and sample them into vectors

– Concatenating all the vectors into one intensity 
vector g
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3D Appearance Modeling3D Appearance Modeling

ggbPgg +=Model of 3D Appearance:Model of 3D Appearance:

– Normalizing the intensity vector 

– Applying PCA to  the normalized data

g
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Building a 3D AAMBuilding a 3D AAM
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ccPb =Complete 3D AAM:Complete 3D AAM:

Concatenating appearance and shape models, Concatenating appearance and shape models, 
one more PCAone more PCA
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Texture Layers

Elevation Image

Reference Curve

3D AAM
Volume Data

3D Texture
Sampling

Optimization

Comparison

3D Surface Model

Diaphragm SegmentationDiaphragm Segmentation
A New 3D AAM ApproachA New 3D AAM Approach
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Preliminary Results in CT Preliminary Results in CT 
DataData

– Training 20 cases

– Testing 8 cases

– 9 Texture layers

– Fringe (extrapolation)

– Mean model scaled by 1.15

– Reference plane position, 
scaling in height and model 
placement  defined 
interactively

Signed surface positioning error (3D):
-0.16 ± 2.95 mm
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Movie Movie –– CT Data Matching 1 CT Data Matching 1 
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Movie Movie –– CT Data Matching 2CT Data Matching 2



Calgary 64

Computer Aided Diagnosis  Computer Aided Diagnosis  
via AAM segmentationvia AAM segmentation

l After fitting the model, modal indices 
b represent the departure from the 
mean

l Can modal indices be used as disease-
specific features?
1) shape features distinguish 

normal/infarct/hypertrophic heart in 2D 
cardiac MR

2) motion features in 2D+T echo
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Cardiac MR Cardiac MR -- InfarctInfarct

Normal Post-Infarct
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CardiomyopathyCardiomyopathy
l Promising results for distinguishing hypertrophic 

cardiomyopathy

l Early detection of irreversible changes of RV function 
in congenital heart disease – project ongoing

Modes 1+2
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Wall Motion from 2D+T EchoWall Motion from 2D+T Echo
l Modal indices of shape/motion from a fitted 

AAM used to test classification correctness vs. 
visual scoring.

l Classification correctness predicted using optimal 
feature selection and a leave-one-out approach, 
129 clinical cases.

l Classification correctness: 
– Overall 92%

l Multivariate linear regression
correlation of AAM
coefficients and visual 
wall motion score à
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ConclusionConclusion

l AAM is a powerful technique with a wide 
application field to medical image data

l Hybrid ASM/AAM further improves 
segmentation performance

l New applications can be designed almost 
automatically by supplying new sets of 
manually-traced examples


