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Medical Imaging and f
Analysis

<+ Medical imaging revelutionized
diagnosing, treatment, and surgical
interventions.

CT

MR

PET
SPECT
Ultrasound

+ Medical image analysis is still mostly
performed visually, off-line, and has a
gualitative character.

< Highly automated quantitative
analysisis needed




Active Appearance Model fm
Based Segmentation

e Goadls:

— Development of arobust segmentation technique based
on shape and appearance

— Single approach to variety of medical image analysis
problems via machine learning

— Native anaysisin 2D, 2D+time, 3D, 4D
— Validation in large groups of subjects

— Application to cardiac MR, cardiac echo, liver tumor
resection surgery planning, ...

— Direct computer-aided diagnosis of disease status
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Medical Areas of Interest

+ Quantitative assessment of left-ventricular (LV)
and right-ventricular (RV) function

« Quantitative analysis of stress echocardiographic
Images

« Quantitative LV anaysisis possiblein MR -
MASS package (Leiden University) based on
optimal graph searching

« Falsin non-standard cases, no reliable RV
segmentation exists

< No reliable Echo segmentation exists




Cardiac MRI
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Point Distribution Models fm

e represent the shape borders of objects as a
collection of corresponding points

° of basic steps ...
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Point Distribution Models
e Compute the average shape

e Computing the modes of variation.

— Compute a covariance matrix
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* Modes of covariance matrix variation can be
determined via eigen-decompeosition of the
covariance matrix.

Principal Component Analysis creates a more compact
basis function from a multi-dimensional set of data where
the mean is at the origin.

The result isa PDM model of shapes
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Modeling Appearance fm

e The appearance of an object can be
described by its shape and texture
e Shape is represented by landmark points

e Textureisrepresented by pixel intensities
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Warping the images to the mean shape
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The mean shape and mean gray-level
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Active Appearance Models

— each example can be expressed by two vectors

bs 2 PST (X_ X)
T —
by » Ky (9- 0)
— bs and bg can be concatenated and PCA applied

— apply a PCA to all concatenated b- vectors
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Matching AAM’s i

e Matching an AAM to an image requires:

— acriterion function e:

e the RMS error of the *difference image™ between the

model and the underlying image patch
— aminimization procedure (Levenberg Marquardt/ simplex)
— derivatives of the criterion function with respect to
al ‘optimizable’ parameters
e can be estimated using multiple linear regression
e examples of derivative images
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Results
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Problems

< Appearance matching may lock on incorrect
features and get stuck in aloca minimum

< Thisis aproblem for quantitative analysis
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Arguments for-a hybrid model fm

< Conventional AAM better suited for
appearance matching than for accurate
border detection - local structures.and
boundary information are not specifically
considered

< Local border properties are considered'in
Active Shape Models

» E)  Hybrid ASM/AAM matching
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L
Hybrid ASM/AAM fr

<+ ASM'’ s shape/pose de-coupled from AAM in each
iteration

<« ASM and AAM matching steps are performed
independently

< Resulting AAM and ASM shape/pose parameters
are combined using weighted averaging after each
iteration

+ Therefined AAM reflects the combined shape and
current appearance

Calgary 20



|

Combined AAM & ASM Fitting fr
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Fully Automated Segmentationﬁ—ﬂ
of Cardiac MR-Images

< Hough Transform determines LV centers

<« AAM matching till convergence

<+ ASM/AAM matching till convergence
(typically 3-5 iterations)

<+ AAM matching initialized with mean
appearance and most recent shape

< Several initial orientations used to achieve
sufficiently good match.
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AAM
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Final ~ ASM/AAM AAM

matching —_—
error Iteration steps

Calgary 24

Fully Automated Segmentationﬁ—ﬂ
of Cardiac MR Images

Original images - varying patient position, large field of view
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Complete Hybrid fi
ASM/AAM Segmentation

Conventiona AAM Hybrid AAM
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l
Experimental Methods fm

< Training set 102 images (11 patients and 23
normals); testing set 60 images (9 patients and 11
healthy subjects), completely digoint

+ Patients suffered from various pathologies such as
hypertrophic obstructive cardiomyopathy,
myocardial infarction or LV aneurysm.

< Three end-diastolic, mid-ventricular dices were
selected per sample.

< Independent standard was manually traced
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Validation.Indices

< Border positioning errors (sgned average, RMS,

max)

< Area measurements (LV, RV, EPI)
+ Computer-determined results compared with

observer-defined independent standard

<+ Regression analysis used for area measurements
< Bland-Altman statistic used to compare area
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measures

Results

<+ Method never failed in the testing set
< All contours were visually pleasing
< No manual initialization

< No manual correction

< Signed border positioning errors
< 0.2£2.2 pixel

f







Results
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AAM vs. Hybrid AAM

« Our multistage hybrid AAM method
significantly outperformed the conventional
AAM approach at the significance leve of

pP<0.001 as assessed by comparison of
unsigned border positioning errorsin the
testing set.

of a2D + time
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l
Experiments-and Results fm

e 129 unselected infarct patients (72 training + 57 testing)
e Endocardial percent areaerror ... -3.1 +10.3%
e Mean signed area gjection fraction errors 0.6 .+ 5.5%

Endocardial Area [om’ % Endoandial Area Eor [%]

20 30
Mlanual
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Three-dimensional AAM }ﬁﬁ

Problems of extension to 3D:

e Point Correspondence

e Even if landmark points are easily
identifiable, specifying uniquely
corresponding points in-between landmarks
isdifficult in 3D.

e Aligning Shapes Three Dimensiondly
e Three Dimensiona Warping
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3-D Point Correspondence fm

hna ghbors
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Averageﬁape_ — 3D AAM ﬁ

* Procrustes alignment and
tetrahedral representation
» 3D PDM (using PCA)
* 3D warping
tation| 3D appearance model (PCA)
. » 3D AAM — combined
shape and appearance
(PCA)

i

=>» no algorithmic difference
from 2D
=> increased computational
complexity
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l
Shape Aligning in 3-D fm

e Shape dignment in 2-D AAMs utilized Procrustes
Analysis.

e 3-D Procrustes Analysis requires a quaternion
representation of pose.

e Rotation is represented as a unit vector and
rotational twist

e Euclidian Rotations may result in singularities
known as gimbal -lock.

e Shape alignment uses procedure by Bed et al.
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L
Three-dimensional AAM }ﬁﬁ

e In generd it is an extension of 2D + time
e Point correspondence remains a problem
e Model construction:

* Instead of Delaney triangulation, LV is explicitly defined
by hand as a set of tetrahedrons — doing it once for
training set

* Quaternion representation used for 3D objects (common
in computer graphics)

» 3D warping implemented using Barycentric coordinates
(center of gravity of triangles)
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3D AAM Segmentation Process i
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3D
Custom orientation
Eit to window
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Results

L eave-one-out study of 53 volumetric MR images
comparing automated and manual volumes.

150 150 XN MO
Masl Isl

Endocardial Epicardial Myocardia
volume volume mass
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3D-AAM ...
unsolved problems

e Model lacks resolution in the zdirection
affecting the ability of the model to extend to
the apex and base in many segmentations

e Point correspondence still adifficult problem
in developing new models.

e The model is dependent on the set of
samples.
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L
Volumetric CT .. Liver + Tumor lﬁﬁ
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LSPS - Image Analysis Part
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Segmentation
liver
segmentation

L _-l:"":‘j ] vascular tree

partitioning 4

tumor
segmentation

segmentation
CT Slice Stack
e —
liver @

Radiological
Knowledge I—




Proposed Solution ...
Seguential Segmentation

3 g
'i

Middle lobe of right lung
Quadrate lobe liver

Left lobe of liver
Diaphragm

Heart

Upper lobe of the left lung
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3D Shape Representation — fg

Elevation Image

Axial
reference
plane

Elevation image describes dome shape
Conversion of a3D problem to 2% D
Landmark placement using 2D grid
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3D Shape Representation — fg
2D Reference Curve

2D reference
curve

Key landmark
point

Landmark
point
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3D Shape Modeling

Reference curve model: REEHHR

Elevation image model: [ENIRAAN

e The shape models are linked via a
warping function

e Fringe (extension of the shape)
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3D Appearance Representation‘ﬁll—LT

— Warping all layers to the mean reference curve
shape and sample them into vectors

— Concatenating all the vectors into one intensity
vector[g]
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3D Appearance Modeling

— Normalizing the intensity vector [}
— Applying PCA to the normalized data

Model of 3D Appearance: [SENCRAMeN
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Building a 3D AAM i

Concatenating appearance and shape models,
one more PCA

Complete 3D AAM:

Calgary 59



Diaphragm Segmentation
A New 3D AAM Approach

Volume Data
Elevation Image

A‘%ME4II'II

3D Surface Model

Comparison

Optimization

Parameters

Texture Layers
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Preliminary Results in CT fm
Data

— Training 20 cases — Mean model scaled by 1.15

— Testing 8 cases — Reference plane pOSition,
scaling in height and model
— 9 Texture layers placement defined

— Fringe (extrapolation) interactively

Signed surface positioning error (3D):
-0.16 £ 2.95 mm
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Movie — CT Data Matching 1 i
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Computer Aided Diagnosis
via AAM segmentation

e After fitting the model, modal indices
b represent the departure from the
mean

e Can modal indices be used as disease-
specific features?

1) shape features distinguish
normal/infarct/hypertrophic heart in 2D
cardiac MR

2) motion featuresin 2D+T echo
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Cardiomyopathy i
e Promising results for distinguishing hypertrophic
cardiomyopathy

e Early detection of irreversible changes of RV function
in congenital heart disease — project ongoing
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Wall Motion from 2D+T Echo fg

e Modal indices of shape/motion from afitted
AAM used to test classification correctness vs.
visua scoring.

e Classification correctness predicted using optimal
feature selection and aleave-ope-gut approa
129 clinical cases. T ———

e Classfication correctness: E;-«E%S"T;‘;m““
— Oveadl 92%

e Multivariate linear regression
correlation of AAM } j{ {

1

L]

coefficientsand visua
wall motion score 2

ASC Praﬂlﬁﬁﬂﬂfwm 4C Tatal
i i i

'T i
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Conclusion

e AAM isapowerful technigue with awide
application field to medical image data

e Hybrid ASM/AAM further improves
segmentation performance

e New applications can be designed almost
automatically by supplying new sets of
manually-traced examples
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