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• INTEGRAL IMAGE is a matrix representation that holds global image
information [Viola and Jones 01]

• values ii(i, j) ... sums of all original image pixel-values left of and above (i, j):

ii(i, j) =
∑

k≤i,l≤j

f(k, l) , (4.1)

• efficiently computed in a single image pass using recurrences

Algorithm 4.2: Integral image construction

1. Let s(i, j) denote a cumulative row sum, let s(i,−1) = 0.

2. Let ii(i, j) be an integral image, let ii(−1, j) = 0.

3. Using a single row-by-row pass through the image, for each image pixel (i, j)
calculate the cumulative row sums s(i, j) and the integral image value ii(i, j)
using the recurrences

s(i, j) = s(i, j − 1) + f(i, j) , (4.2)

ii(i, j) = ii(i− 1, j) + s(i, j) . (4.3)

4. After reaching the lower right image corner pixel after a single pass through
the image, the integral image ii is constructed.
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• main use of integral image data structures is in rapid calculation of simple
rectangle image features at multiple scales

• used for rapid object identification

• and for object tracking

• any rectangular sum can be computed using four array references

• a feature reflecting a difference between two rectangles requires eight references

• adjacent two-rectangle features require only six array references since the rect-
angles are adjacent

• three- and four-rectangle features of Figure 4.2c,d can be calculated using eight
and nine references to the integral image values, respectively

• rectangle features can be computed extremely efficiently and in constant time
once the integral image is formed
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Figure 4.1: Calculation of rectangle features from an integral image. The sum of pixels
within rectangle D can be obtained using four array references. Dsum = ii(δ) + ii(α) −
(ii(β) + ii(γ)), where ii(α) is the value of the integral image at point α, i.e., the sum of
image values within the rectangle A. Similarly, the value ii(β) is the sum of values in
rectangles A and B, etc.
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(a) (b) (c) (d)

Figure 4.2: Rectangle-based features are calculated from an integral image. These fea-
tures are calculated by subtraction of the sum of the shaded rectangle(s) from the non-
shaded rectangle(s). The figure shows (a,b) two-rectangle, (c) three-rectangle, and (d) four-
rectangle features. The four-rectangle features can be computed in two diagonal directions.
The sizes of the individual rectangles can be varied to yield different features as well as
features at different scales. The contributions from the shaded and non-shaded regions
can be normalized to account for possibly unequal region sizes.
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8.6 Boosting in pattern recognition

• single classifier rarely solve a problem completely, or even ‘well enough’

• it is common to combine a number of independent classifiers to improve overall
performance

• individual classifiers may be very weak [or base] in isolation
(that is, in a two-class problem, a classifier may perform little better than 50%)

• simple rules are applied in turn, each time working with a different subset of
the training examples

• achieving improved performance of any given learning algorithm is called boost-
ing and is general

• after many rounds of calling these weak classifiers, the boosting algorithm
combines the weak rule outcomes in a single classification rule that is much
more accurate than any of the constituent weak rules
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Questions to be solved:

• how to select training subsets submitted to the individual weak classifiers

• how to combine weak rules in a single strong rule

• ⇒ a generally accepted approach ... let the weak classifiers function sequentially
and place the most weight on “difficult” training examples, i.e., those that were
misclassified in the previous round(s) of applying the other weak classifiers

• to combine the weak rules in a single strong rule ... a weighted majority vote
of weak classifier outputs is an obvious strategy

• boosting produces very accurate classifications by combining classifications,
which are only moderately accurate
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• pattern space X

• training set of m patterns xi

• their corresponding class identifiers ωi

• and assuming two-class classification (ωi ∈ {−1, 1})
• weak classifiers Wk applied to training set in which importance of correctly

classifying individual examples varies step by step

• in each step k, this importance is specified by a set of weights Dk(i), so that∑m
i=1Dk(i) = 1

• initially, the weights are set equally but for each next step k+ 1, the weights of
examples incorrectly classified in step k are increased (in a relative sense)

• consequently, the weak classifier Wk+1 concentrates on the difficult examples,
which were not correctly classified in the previous round(s)
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Algorithm 8.3: AdaBoost

1. Initialize K, the number of weak classifiers to employ

2. Set k = 1, and initialize D1(i) = 1/m.

3. For each step k, train a weak classifier Wk using the training set with a
set of weights Dk(i), so that a real number is assigned to each pattern xi;
Wk : X →R.

4. Choose αk > 0 ∈ R.

5. Update

Dk+1(i) =
Dk(i)e

−αk ωiWk(xi)

Zk
, (8.6)

where Zk is a normalization factor chosen so that
∑m
i=1Dk+1(i) = 1.

6. Set k = k + 1.

7. If k ≤ K, return to step 3.

8. The final strong classifier S is defined as

S(xi) = sign

(
K∑

k=1

αkWk(xi)

)
. (8.7)
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Notice at step 5 that the exponent is positive for misclassifications, lending
more weight to the associated D(i).

• In each step, the weak classifier Wk needs to be determined so that its perfor-
mance is appropriate for the training set with the weight distribution Dk(i).

• In the dichotomy classification case, the weak classifier training attempts to
minimize the objective function ǫk

ǫk =

m∑

i=1

Pi∼Dk(i)

[
Wk(xi) 6= ωi

]
, (8.8)

P [·] ... empirical probability observed on the training sample

• the error ǫk is calculated with respect to the weight distribution Dk
(characterized as the sum of probabilities Pi∼Dk(i) in which the weight distri-
bution Dk(i) is considered together with the classification correctness achieved
on the training patterns xi)

• misclassification of training patterns xi for which Dk(i) is low (patterns cor-
rectly classified in the previous weak classifier steps) increases the error value
less than the misclassification of the patterns of focus of the weak classifier Wk

• ⇒ individual weak classifiers are trained to classify different portions of the
training set better than randomly
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• value of αk in step 5 can be – for a two-class classification problem

αk =
1

2
ln

(
1− ǫk
ǫk

)
(8.9)

• behavior of the final strong classifier S is determined by the weighted majority
vote of all K weak classifiers considering the classifier-specific weights αk

• AdaBoost algorithm can achieve a classification accuracy that is arbitrarily close
to 100%
(as long as each of the weak classifiers is at least slightly better than random
and assuming availability of sufficient training data)

• AdaBoost’s ability to convert a weak learning algorithm into a strong learning
algorithm has been formally proven
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In addition to an ability to learn from examples, the ability to generalize and
thus correctly classify previously unseen patterns is of basic importance. Theoretical
considerations suggest that Adaboost may be prone to overfitting, but experimental
results show that typically it does not overfit, even when run for thousands of
rounds. More interestingly, it was observed that AdaBoost sometimes continues to
drive down the classification error long after the training error had already reached
zero (see Figure 8.12).
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Figure 8.12: AdaBoost—observed training and testing error rate curves as a function of
the number of boosting rounds. Note that the testing error keeps decreasing long after
the training error has already reached zero. This is associated with a continuing increase
in the margin that increases the overall classification confidence with additional rounds of
boosting. For comparison, the horizontal lines indicate the error rate of the base and final
classifiers.
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10.6 Boosted cascade of classifiers

for rapid object detection

• rapid face detection led to a framework for general object detection and object
tracking tasks [Viola and Jones 01]

• first stage

– new image representation called an integral image allows fast computation
of many simple image-based features (Section 4.2.1)

– number of calculated features is far larger than the number of image pixels

– over-complete representation results

– subset of best features needs to be identified

• second stage

– learning based on AdaBoost (Section 8.6) yields small number of well dis-
tinguishing features

– and a set of efficient classifiers

– feature selection performed using a modified AdaBoost algorithm in which
the weak classifiers can only depend on a single feature [Tieu and Viola 04]

• third stage

– classifiers are ordered in a cascade sequence starting with simple and thus
fast classifiers used for quickly rejecting object-detection hypotheses, to
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employing more complex and therefore more powerful but slower classifiers
that are applied only to the remaining, not-yet rejected hypotheses

– this strategy dramatically improves object detection speed.

• approach does not work directly with image intensity data

• integral image is used to quickly calculate responses of simple region-based filters
at many scales

• specific filters are object dependent and can be used to encode problem-specific
knowledge

• rapid computation of rectangle features – based on the integral image (Section
4.2.1 (see Figure 4.2))

• rectangular features computed in constant time using the integral image

• in one application ... three kinds of features were used for face detection
calculated from two, three, or four rectangle configurations (Figure 4.2)

• despite the obvious simplicity
despite the small number of directions
features are very sensitive to edges, bars, and other simple image structures

• multi-scale rectangle feature determination provides a rich feature set facilitat-
ing effective learning
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• large feature set available together with a training set of p positive and q negative
examples (assuming a two-class problem)

• only a small number of these features can be used in combination to yield an
effective classifier

• a single rectangle feature is first selected using a weak learning approach to best
separate the positive and negative examples

• followed by additional features identified by the iterative boosting process

• for each selected feature, the weak learner finds an optimal threshold minimizing
the number of misclassified examples from the training set
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• each weak classifier is thus based on a single feature fj and a threshold tj

hj(x) = 1 if pjfj(x) < pjtj ,

= −1 otherwise,
(10.26)

pj is a polarity indicating the direction of the inequality sign
x is an image subwindow on which the individual rectangle features fj are
calculated

• while no single feature can typically perform the overall classification task with
low error, the sequential character of feature selection means that the features
picked first and their associated classifiers have a relatively high classification
success on their respective training sets, say between 70% and 90%

• the classifiers trained in later rounds on the remaining more difficult examples
yield classification correctness of 50–60%
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Algorithm 10.11: AdaBoost feature selection and classifier learning

1. Consider a two-class problem, a training set of positive and negative examples
xi, and their corresponding class identifiers ωi ∈ {−1, 1}.

2. Initialize K, the number of features to be identified.

3. Set k = 1; for each sample xi, initialize weights

w1,i =
1

2q
for ωi = −1 ,

=
1

2p
for ωi = 1 .

4. For k 6= 1, normalize the weights to produce a probability distribution

wk,i :=
wk,i∑p+q
l=1 wk,l

. (10.27)

5. For each feature fj , train a classifier hk,j restricted to using a single feature.
Evaluate its classification error ǫk,j on the training set considering the current
weights wk,i associated with each sample xi

ǫk,j =
1

2

∑

i

wk,i
∣∣hj(xi)− ωi)

∣∣ . (10.28)
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6. Select the classifier hk,j with the lowest error ǫk,j .

7. Update the weights for all samples xi

wk+1,i = wk,iβ
1−Ei
k , (10.29)

where βk = ǫk,j/(1− ǫk,j) and

Ei = 0 if xi is classified correctly,

= 1 otherwise.

8. Set k := k + 1.

9. If k ≤ K, return to step 4.

10. The final strong classifier S(xi) is defined as

S(xi) = 1 for

K∑

k=1

αkhk,j(xi) ≥
1

2

K∑

k=1

αk ,

= −1 otherwise,

where αk = log (1/βk) and j denotes the single features, which are used in
the K weak classifiers hk,j , respectively.
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The weighting update in step 7 means that any sample classified correctly in
this round is not considered when determining the classification correctness in the
next round.

• ... originally developed for frontal human face recognition

• the first and second features selected are easily interpretable

• first feature – eye region

• second feature – eyes are usually darker compared to the nose bridge
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(a) (b) (c) (d) (e)

Figure 10.27: Two most significant feature determined by Algorithm 10.11 for face detec-
tion in subwindows of 24 × 24 pixels [Viola and Jones 01]. (a) Original image. (b) First
most distinguishing feature corresponds to the frequent case when the eye region is darker
than the region of the nose and cheeks. (c) The first feature overlaid over the original
image. (d) Second most distinguishing feature is in agreement with the observation that
the eyes are darker compared to the nose bridge located between them. (e) The second
feature overlaid.
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• previous step identifies the most distinguishing features

• ⇒ cascade of classifiers to decrease processing time and increase performance

• early-stage simple classifiers are set so that their false negative rates (number
of missed detections) is close to zero

• price paid for such behavior is an increase in the false positive rate

• but ... simpler early stage classifiers are used to quickly reject the majority of
candidate locations (subwindows in which features are computed)

• increasingly more complex classifiers are employed in the locations that remain
unrejected

• ultimately, the remaining non-rejected locations are marked as the locations of
identified objects.

Figure 10.28:

• this cascade of classifiers ... a degenerate decision tree

• each classifier stage n + 1 is only called if the classifier n has not rejected the
candidate location

• classifiers in all individual stages are trained using AdaBoost and adjusted to
minimize false negatives
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Stage 1 Stage 3 Stage nStage 2 Post-
processing

Reject the candidate location = no detection

Candidate location

Figure 10.28: Detection cascade applied to each analyzed location–image subwindow. The
early-stage simple classifiers reject less likely locations while maintaining a very low false
negative rate. The later-stage more complex classifiers eliminate more and more false
positives while they are set not to reject true positives.
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Face detection

• powerful first stage classifier can be constructed from the two features identified
above (Figure 10.27)

• this classifier detects 100% of face objects with about 40% false positives

• later-stage classifiers have increasingly higher false-positive rates

• since they are only applied to the subset of already-identified high-likelihood
locations, the likelihood of invoking these classifiers is decreasing with the in-
creased depth in the decision tree

• additional cascade stages added until the overall detection performance is suf-
ficient

• since features are evaluated at multiple scales, subwindows are allowed to over-
lap – there may be overlapping multiple detections for each detected object

• multiple detections must be postprocessed to yield a single final detection per
location
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Figure 10.29: Some of the training face images used in the face detection system based
on the boosted cascade of classifiers. Courtesy of P. Viola, Microsoft Live Labs and M. Jones,

Mitsubishi Electric Research Labs, ©2001 IEEE [Viola and Jones 01].
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Face detection

• 38 stages + over 6,000 features.

• required about 10 feature evaluations per subwindow

• high detection speed even when tested on difficult data with 75 million subwin-
dows and over 500 faces present

• the approach itself is general and can be used for a variety of object detection
and recognition tasks
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(a) (b)

Figure 10.30: Example results of face detection using the described method of the boosted
cascade classifiers. Each detected face is identified by an overlaying rectangle. Courtesy

of P. Viola, Microsoft Live Labs and M. Jones, Mitsubishi Electric Research Labs, ©2001 IEEE

[Viola and Jones 01].


