

		Dat	ta Form	nat			
ĺ	X1	X2		X89	Y		
	Wind speed of Turbine 1	Wind speed of Turbine 2	Wind speed of Turbine i	Wind speed of Turbine 3	Wind farm power		
	Preprocess the data and prepare them into the format for Data Mining Software, e.g. Weka and Statistica						
ń	The University	of Iowa		Intelligent System	as I aboratory		

Time Stamp	Turbine_1	Turbine_2	Turbine_3	Turbine_4	Total Power
1/1/06 12:00 AM	7.96	8.92	8.78	7.17	3556.85
1/1/06 12:10 AM	8.35	8.49	9	6.86	3514.91
1/1/06 12:20 AM	8.5	8.4	9.06	6.89	3621.85
1/1/06 12:30 AM	8.34	8.4	9.12	7.02	3499.33
1/1/06 12:40 AM	7.98	8.5	9.44	6.75	?

Basic steps of PCA

- Compute a correlation matrix.
- Compute the eigenvectors and eingenvalues of the correlation matrix.
- Select the components to form an eingenvector.
- Derive the new data comprised of the principal component of the original data.

Intelligent Systems Laboratory

The University of Iowa

Eigen values of the correlation matrix and the related statistics

			(,,)			
	1	85.17	95.70	85.17	95.70	
	2	0.54	0.61	85.72	96.31	
	3	0.36	0.41	86.09	96.73	
	4	0.20	0.23	86.29	96.96	
	5	0.18	0.20	86.48	97.17	
	6	0.15	0.17	86.63	97.34	
	7	0.18	0.15	86.77	97.49	
	8	0.13	0.14	86.90	97.64	
	9	0.11	0.12	87.01	97.77	
	10	0.09	0.11	87.11	97.88	
i TE	The University	of Iowa		Intelligent Systems Laboratory		

