Turbine Life Cycle Engineering

Andrew Kusiak Intelligent Systems Laboratory 2139 Seamans Center The University of Iowa Iowa City, Iowa 52242 - 1527 andrew-kusiak@uiowa.edu Tel: 319-335-5934 Fax: 319-335-5669 http://www.icaen.uiowa.edu/~ankusiak

The University of Iowa

Intelligent Systems Laboratory

Life Cycle Engineering

✓ Where it all begins?

- ✓ All resources are limited, including ability of the earth and atmosphere to clean itself
- ✓ Major water and atmosphere pollutants, e.g., CO₂, NO_x, and SO_x
- CO2 emissions in the energy production process (in particular the wind energy equipment production)
 Water contamination by industry, e.g., waste disposal, etc.
- Water contamination by industry, e.g., waster disposal, etc.
 Waste and disposal of contaminants and resources, e.g., electronics, mercury, cellulose (paper)

The University of Iowa

Intelligent Systems Laboratory

Sustainable Development Main goal • Meeting our needs without negative impact on the ability of future generations to meet their needs • Most disputes evolve around who is going to pay for making the world clean and healthy • Is it natural to be sustainable (responsible, no debt, ...)

Sustainability Chain in Wind Energy

Energy usage and environmental impact perspective

- ✓ Extraction of natural resources, e.g., iron ore, chemicals, cellulose
- ✓ Transportation of natural resources
- ✓ Production of raw materials, e.g., iron, fiber glass
- ✓ Fabrication and machining material processing
- ✓ Assembly of subsystems
- ✓ Transportation
- ✓ Final assembly
- ✓ Service (operations and maintenance)
- ✓ Product end of life

The University of Iowa

Sustainable Manufacturing

- ✓ Sustainability is of paramount importance in wind energy industry due to high material (energy) content, e.g., gearbox, tower, cables
- ✓ Sustainability has not been sufficiently addressed at this time by the wind energy industry due to the wind energy "rush"
- ✓ Now is the very last opportunity (somewhat late) to address turbine life-cycle engineering issues in wind industry

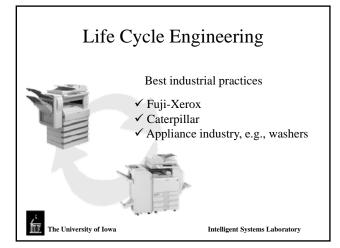
The University of Iowa

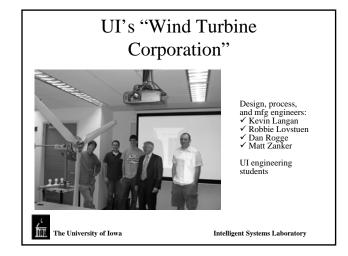
Intelligent Systems Laboratory

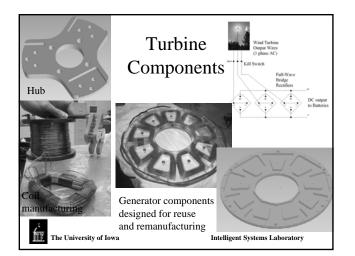
The Four-Criteria Dilemma

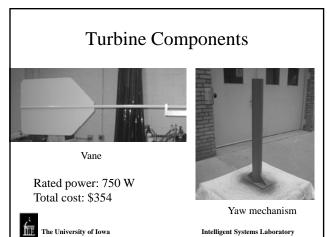
- ✓ Maximization of turbine performance
- ✓ Maximization of turbine life-cycle
- \checkmark Minimization of energy used to built a turbine
- ✓ Minimization of environmental impacts
 - Emerging solution: Predictive engineering

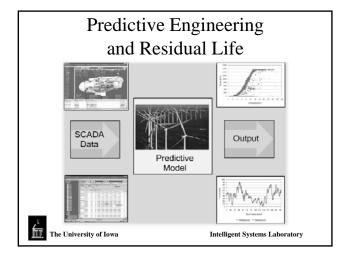
Source of Decreased Wind Turbine Life Time?

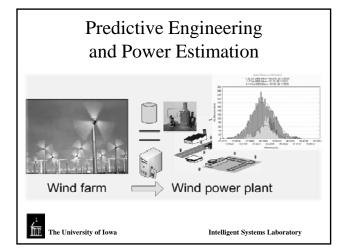

✓ Problem:	Variable loads
✓ Key issue:	Torque management is a viable solution to reduction of extreme stresses
✓ Solution:	Anticipation of the extreme loads (wind conditions)
✓ Implementatio	n: Predictive engineering


What to Do With an Old Wind Farm Equipment?

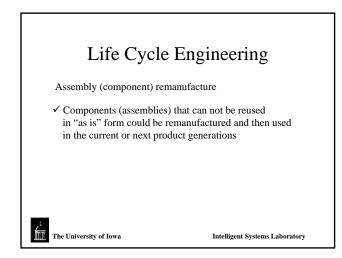

Life cycle engineering


ŕ


The University of Iowa



Sustainable Manufacturing State Life Cycle Engineering covers issues ranging from product (component) conceptual design to its retirement Paper: 2 Basic ways of assembly (component) retirement: • Paper: 2 • Reuse (most preferred) • Milk car • Recycle • Disposal (should disappear) • The University of Iowa Intelligent Systems Laboratory


Life Cycle Engineering

Assembly (component) reuse

- ✓ Products involve components and assemblies with different useful life time
- Estimating (predicting) residual life time of components and assemblies is of importance to their reuse
- ✓ A component (assembly) designed for sustainability may be reused a number of times and serve different product generations

The University of Iowa

Intelligent Systems Laboratory

Life Cycle Engineering

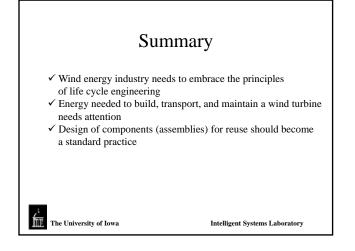
Assembly (component) recycle

- ✓ Components (assemblies) that can not be reused and remanufactured should be recycled in most environmentally conscious way
- ✓ Components (assemblies) disposal should meet the highest standards of the societal scrutiny
- ✓ The long-term goal should be elimination of the product disposal as the life cycle alternative

The University of Iowa

Intelligent Systems Laboratory

Benign Manufacturing and Transportation


- ✓ The turbine manufacturing process itself and transportation should not adversely impact the natural environment
- Manufacturing processes with minimal adverse impact on the environment should be developed
- ✓ Supply chain logistics should focus on minimizing transportation energy during the wind farm construction as well as operations and maintenance

The University of Iowa

Ubiquitous Manufacturing and Wind Farm Operations

- ✓ A ubiquitous system involves many sensors, including RFIDs
- ✓ Comprehensive integration of information among physical objects (e.g., machine tools, components) and people for the best outcomes in productivity, quality, and energy use
- ✓ The concept of *ubiquitous* systems could apply to turbine manufacturing, transportation, and wind farm operations

The University of Iowa

