Data Mining Big Data Analytics) Andrew Kusiak Intelligent Systems Laboratory 2139 Seamans Center The University of Iowa Iowa City, IA 52242 - 1527 andrew-kusiak@uiowa.edu http://user.engineering.uiowa.edu/~ankusiak/ Tel. 319-335 5934 Fax. 319-335 5669

What is Data Mining? Domain understanding Data selection Data cleaning, e.g., data duplication, missing data Preprocessing, e.g., integration of different files Pattern (knowledge) discovery Interpretation (e.g.,visualization) Reporting

Learning Systems (2/2)

- Association rule algorithms
- Text mining algorithms
- Meta-learning algorithms
- Inductive learning programming
- Sequence learning

Neural Networks

· Based on biology

tion

)efinit

6

- Inputs transformed via a network of simple processors
- Processor combines (weighted) inputs and produces an output value
- Obvious questions: What transformation function do you use and how are the weights determined?

Types of Decision Trees

- CHAID: Chi-Square Automatic Interaction Detection
 - Kass (1980)
 - n-way splits
 - Categorical variables
- CART: Classification and Regression Trees
 - Breimam, Friedman, Olshen, and Stone (1984)
 - Binary splits
 - Continuous variables
- C4.5
 - Quinlan (1993) - Also used for rule induction

- Mining unstructured data (free-form text) is a challenge for data mining
- Usual solution is to impose structure on the data and
 - then process using standard techniques, e.g., - Simple heuristics (e.g., unusual words)

 - Domain expertise
- Linguistic analysis • Presentation is critical

Yet Another Classification • Supervised

- Regression models
- k-Nearest-Neighbor
- Neural networks

Examples

- Rule induction
- Decision trees
- Unsupervised
 - k-means clustering
 - Self organized maps

Knowledge Representation Forms

- Examples • Decision rules
 - Trees (graphs)
 - Patterns (matrices)

DM: Product Quality Example Training data set								
Product	Process	Test_1	Process	Test_2	Quality			
ID	param 1		param_2		D			
1	1.02	Red	2.98	High	Good_Quality			
2	2.03	Black	1.04	Low	Poor_Quality			
3	0.99	Blue	3.04	High	Good_Quality			
4	2.03	Blue	3.11	High	Good_Quality			
5	0.03	Orange	0.96	Low	Poor_Quality			
6	0.04	Blue	1.04	Medium	Poor_Quality			
7	0.99	Orange	1.04	Medium	Good_Quality			
8	1.02	Red	0.94	Low	Poor_Quality			
Line University of Iowa Intelligent Systems Laboratory								

	Clas	sification	Accurac	су					
	Test: Leaving-one-out								
ltior	Confusion Matrix								
		Poor_Quality	Good_Quality	None					
গু	Poor_Quality	3	1	0					
70SS-Valli	Good_Quality	1	3	0					
	Average Accuracy [%]								
		Correct	Incorrect	None					
	Total	75.00	25.00	0.00					
5	Poor_Quality	75.00	25.00	0.00					
	Good_Quality	75.00	25.00	0.00					

Rule 113

- IF (B_Master >= 1634.26)
- A P P r o x I M a t e AND (B_Temp in (1601.2, 1660.22]
- AND (B_Pressure in [17.05, 18.45))
- AND (A_point = 0.255) AND (Average_O2 = 77)
- THEN (Eff = 87) OR (Eff = 88);
- r u | [6, 6, 23.08%, 100.00%][0, 0, 0, 0, 0, 0, 0, 3, 3, 0]
- [{2164, 2167, 2168}, {2163, 2165, 2166}]

1

Decision rules

- A P P r o X M a r e
- Rule 12
- IF (Ave_Middle_Bed = 0) AND (PA_Fan_Flow = 18) THEN
- (Efficiency = 71);
- [16, 10, 10.31%, 62.50%] [1, 1, 2, 10, 2,]
- [{ 682 }, { 681 }, { 933, 936 }, { 875, 876, 877, 878, 879, 880, 934, 935, 1000, 1001 }, r u - 0
- { 881, 882 }]
- 2

Decis	sion	Rul Al	e vs gori	De thm	cision Tr s	ee
ه	F1	F2	F3	F4	D	
Ĵa(0	0	0	1	One	
 	0	0	1	1	Two	
min	0	1	1	1	Three	
le Le	1	1	1	1	Four	

