Data Mining

Andrew Kusiak Intelligent Systems Laboratory 2139 Seamans Center The University of Iowa Iowa City, Iowa 52242 - 1527

Tel: 319 - 335 5934 Fax: 319 - 335 5669 andrew-kusiak@uiowa.edu http://www.icaen.uiowa.edu/~ankusiak

Partially based on the material provided by J Han and M Kamber

Classification and Prediction

- Learning
- Classification and prediction
- Classification by decision tree induction
- Classification by backpropagation
- Other Classification Methods
- Prediction
- Classification accuracy

http://www.kdnuggets.com/

Learning

What is learning?

- Extraction of knowledge
- · Pattern creation
- · Basis of learning
 - Training data set

Classification vs. Prediction

ategorie

- Classification:
 - predicts categorical class labels
 - classifies data (constructs a model) based on the training set and the values (class labels) in a classifying attribute and uses it for classifying cases with unknown outcomes

(timuous

- Prediction:
 - models continuous-valued functions, i.e., predicts unknown or missing values

http://www.twocrows.com/glossary.htm

Supervised vs. Unsupervised Learning

- Supervised learning (classification)
 - Supervision: The training data (observations, measurements, etc.) are accompanied by labels indicating the class of the observations
 - New data is classified based on the training set
- Unsupervised learning (clustering)
 - The class labels of training data is unknown
 - Given a set of measurements, observations, etc. with the aim of establishing the existence of classes or clusters in the data

Classification by Decision Tree Induction

- · Decision tree
 - A flow-chart-like tree structure
 - Internal node denotes a test on an attribute
 - Branch represents an outcome of the test
 - Leaf nodes represent class labels or class distribution
- Decision tree generation consists of two phases
 - Tree construction
 - At start, all the training examples are at the root
 - Partition examples recursively based on selected attributes
 - Tree pruning
- Identify and remove branches that reflect noise or outliers
- Use of decision tree: Classifying an unknown sample
 - Test the attribute values of the sample against the decision tree

				ee Algori	
	age	income	student	credit_rating	buys_computer
uinlan's	<=30	high	no	fair	no
or set set set set	<=30	high	no	excellent	no
	3040	high	no	fair	yes
	>40	medium	no	fair	yes
	>40	low	yes	fair	yes
	>40	low	yes	excellent	no
	3140	low	yes	excellent	yes
	<=30	medium	no	fair	no
	<=30	low	yes	fair	yes
	>40	medium	yes	fair	yes
	<=30	medium	yes	excellent	yes
	3140	medium	no	excellent	yes
	3140	high	yes	fair	yes
	>40	medium	no	excellent	no

Information Gain in Decision Tree Induction Assume that using attribute A a set S will be partitioned into sets $\{S_1, S_2, ..., S_v\}$, i.e., v attribute A values - If S_i contains p_i examples of P and n_i examples of N, the entropy, or the expected information needed to classify objects in all sub-trees S_i is $E(A) = \sum_{i=1}^{v} \frac{p_i + n_i}{p + n} I(p_i, n_i)$

 The encoding information that would be gained by branching on A

Homogeneity measure

$$Gain(A) = I(p,n) - E(A)$$

		Exa	mple	
age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3040	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Classification Accuracy 1

M definitio

Classification accuracy (CA) of a rule set is the ratio of the number of correctly classified objects from the test set and all objects in the test set

Classification Accuracy 3

Predicted result

 $\begin{aligned} & \textbf{Accuracy} = \\ & (A+D)/(A+B+C+D) \end{aligned}$

- Sensitivity (true positive rate) = A/(A+B)
- Specificity (true negative rate) = D/(C+D)
- False negative rate = B/(A+B) = 1 Sensitivity (Type I error)
- False positive rate = C/(C+D) = 1 -Specificity (Type II error)
- Positive predicted value = A/(A+C)
- Negative predicted value = D/(B+D)

Neural Networks

- Advantages
 - prediction accuracy is generally high
 - robust, works when training examples contain errors
 - output may be discrete, real-valued, or a vector of several discrete or real-valued attributes
 - fast evaluation of the learned target function
- Disadvantages
 - long training time
 - difficult to understand the learned function (weights)
 - not easy to incorporate domain knowledge

 $\underline{http://www.doc.ic.ac.uk/\sim\!nd/surprise_96/journal/vol4/cs11/report.html}$

Neural Network Training

- The ultimate objective of training
 - obtain a set of weights that makes almost all the tuples in the training data classified correctly
- Steps
 - Initialize weights with random values
 - Feed the input tuples into the network one by one
 - For each unit
 - Compute the net input to the unit as a linear combination of all the inputs to the unit
 - Compute the output value using the activation function
 - Compute the error
 - Update the weights and the bias

Other Classification Methods

- k-nearest neighbor classifier
- Case-based reasoning
- Genetic algorithm
- · Rough set approach
- Fuzzy set approach

Genetic Algorithms

- GA: based on an analogy to biological evolution
- Each rule is represented by a string of bits
- An initial population is created consisting of randomly generated rules
 - $-\,$ e.g., IF $\rm A_1$ and Not $\rm A_2$ then $\rm C_2$ can be encoded as 100
- Based on the notion of survival of the fittest, a new population is formed to consists of the fittest rules and their offspring
- The fitness of a rule is represented by its classification accuracy on a set of training examples
- Offspring are generated by crossover and mutation

 $\underline{http://www4.ncsu.edu/eos/users/d/dhloughl/public/stable.htm}$

Rough Set Approach

- Rough sets are used to approximately or "roughly" define equivalent classes
- A rough set for a given class C is approximated by two sets: a lower approximation (certain to be in C) and an upper approximation (cannot be described as not belonging to C)
- Finding the minimal subsets (reducts) of attributes (for feature reduction) is NP-hard but a discernibility matrix is used to reduce the computation intensity

Regression Analysis and Log-Linear Models in Prediction

- Linear regression: $Y = \alpha + \beta X$
 - Two parameters , α and β specify the line and are to be estimated by using the data at hand.
 - using the least squares criterion to the known values of Y1, Y2, ..., X1, X2,
- Multiple regression: Y = b0 + b1 X1 + b2 X2.
 - Many nonlinear functions can be transformed into the above.
- Log-linear models:
 - The multi-way table of joint probabilities is approximated by a product of lower-order tables.
 - Probability: $p(a, b, c, d) = \alpha ab \beta ac \chi ad \delta bcd$

Prediction: Categorical Data | Compared | C

Classification Accuracy: Estimating Error Rates

- Partition: Training-and-testing
 - use two independent data sets, e.g., training set (2/3), test set(1/3)
 - used for data set with large number of samples
- Cross-validation
 - divide the data set into k subsamples
 - use k-1 subsamples as training data and one sub-sample as test data --- k-fold cross-validation
 - for data set with moderate size
- Bootstrapping (leave-one-out)
 - for small size data

Reference

Han J. and M. Kamber (2000), *Data Mining: Concepts and Techniques*, Academic Press, San Diego, CA.