
© Don Thomas, 1998, Page 1

The Verilog Hardware Description Language

� These slides were created by Prof. Don Thomas at Carnegie
Mellon University, and are adapted here with permission.

� The Verilog Hardware Description Language, Fifth Edition,
by Donald Thomas and Phillip Moorby is available from
Springer, http://www.springer.com.

1© Don Thomas, 1998, 1

Springer, http://www.springer.com.

Verilog Overview

�Verilog is a concurrent language
� Aimed at modeling hardware — optimized for it!

� Typical of hardware description languages (HDLs), it:

- provides for the specification of concurrent activities

- stands on its head to make the activities look like they happened
at the same time

� Why?

allows for intricate timing specifications

2© Don Thomas, 1998, 2

- allows for intricate timing specifications

�A concurrent language allows for:
� Multiple concurrent “elements”

� An event in one element to cause activity in another. (An event is an
output or state change at a given time)

- based on interconnection of the element’s ports

� Further execution to be delayed

- until a specific event occurs

Simulation of Digital Systems

�Simulation —
� What do you do to test a software program you write?

- Give it some inputs, and see if it does what you expect

- When done testing, is there any assurance the program is bug
free? — NO!

- But, to the extent possible, you have determined that the
program does what you want it to do

3© Don Thomas, 1998, 3

� Simulation tests a model of the system you wish to build

- Is the design correct? Does it implement the intended function
correctly? For instance, is it a UART

� Stick in a byte and see if the UART model shifts it out correctly

- Also, is it the correct design?
� Might there be some other functions the UART could do?

Simulation of Digital Systems

� Simulation checks two properties
� functional correctness — is the logic correct

- correct design, and design correct

� timing correctness — is the logic/interconnect timing correct

- e.g. are the set-up times met?

� It has all the limitations of software testing

4© Don Thomas, 1998, 4

� It has all the limitations of software testing
� Have I tried all the cases?

� Have I exercised every path? Every option?

© Don Thomas, 1998, Page 2

Modern Design Methodology

always
mumble
mumble
blah
blah

Synthesizable Verilog

Synthesis gates, gates, gates, …

Simulation and Synthesis are components of a design methodology

5© Don Thomas, 1998, 5

clb 1
clb 2

Place
and

Route

Verilog Levels of Abstraction

�Gate modeling (Structural modeling)
� the system is represented in terms of primitive gates and their

interconections

- NANDs, NORs, …

�Behavioral modeling
� the system is represented by a program-like language

6© Don Thomas, 1998, 6

DD always
@posedge clock

Q = #5 D

gate-level model behavioral model

Q Q

Representation: Structural Models
�Structural models

� Are built from gate primitives and/or other modules

� They describe the circuit using logic gates — much as you
would see in an implementation of a circuit.

� Identify:
� Gate instances, wire names, delay from a or b to f.

� This is a multiplexor — it selects one of n inputs (2 here) and
passes it on to the output

7© Don Thomas, 1998, 7

7

module MUX (f, a, b, sel);
output f;
input a, b, sel;

and #5 g1 (f1, a, nsel),
g2 (f2, b, sel);

or #5 g3 (f, f1, f2);
not g4 (nsel, sel);

endmodule

a

b

f

sel

f = a • sel’ + b • sel

a

b

f

sel

nsel

f2

f1

Representation: Gate-Level Models
�Need to model the gate’s:

� Function

� Delay

� Function
� Generally, HDLs have built-in gate-level primitives

- Verilog has NAND, NOR, AND, OR, XOR, XNOR, BUF, NOT, and
some others

� The gates operate on input values producing an output value

8© Don Thomas, 1998, 8

� The gates operate on input values producing an output value

- typical Verilog gate instantiation is:

and #delay instance-name (out, in1, in2, in3, …);

optional “many”

and #5 g1 (f1, a, nsel);

a comma here let’s you
list other instance names
and their port lists.

© Don Thomas, 1998, Page 3

Four-Valued Logic

�Verilog Logic Values
� The underlying data representation allows for any bit to have one

of four values

� 1, 0, x (unknown), z (high impedance)

� x — one of: 1, 0, z, or in the state of change

� z — the high impedance output of a tri-state gate.

�What basis do these have in reality?
� 0 1 ti

9© Don Thomas, 1998, 9

� 0, 1 … no question

� z … A tri-state gate drives either a zero or one on its output. If it’s
not doing that, its output is high impedance (z). Tri-state gates are
real devices and z is a real electrical affect.

� x … not a real value. There is no real gate that drives an x on to a
wire. x is used as a debugging aid. x means the simulator can’t
determine the answer and so maybe you should worry!

�BTW …
� some simulators keep track of more values than these. Verilog will

in some situations.

Four-Valued Logic

� Logic with multi-level logic values
� Logic with these four values make sense

- NAND anything with a 0, and you get a 1. This includes having
an x or z on the other input. That’s the nature of the nand gate

- NAND two x’s and you get an x

� Note: z treated as an x on input. Their rows and columns are the
same

� If you forget to connect an input it will be seen as an z

10© Don Thomas, 1998, 10

� If you forget to connect an input … it will be seen as an z.

� At the start of simulation, everything is an x.

Nand 0 1 x z
0 1 1 1 1
1 1 0 x x
x 1 x x x
z 1 x x x

A 4-valued truth table for a
Nand gate with two inputs

In
p

u
t

A

Input B A
B

How to build and test a module

�Construct a “test bench” for your design
� Develop your hierarchical system within a module that has input and

output ports (called “design” here)

� Develop a separate module to generate tests for the module (“test”)

� Connect these together within another module (“testbench”)

module design (a, b, c);
input a, b;

module testbench ();

11© Don Thomas, 1998, 11

output c;
…

module test (q, r);
output q, r;

initial begin
//drive the outputs with signals
…

module testbench ();
wire l, m, n;

design d (l, m, n);
test t (l, m);

initial begin
//monitor and display
…

Another view of this

� 3 chunks of Verilog, one for each of:

TESTBENCH is the final piece of hardware which
connect DESIGN with TEST so the inputs generated
go to the thing you want to test...

12© Don Thomas, 1998, 12

Your hardware
called

DESIGN

Another piece of
hardware, called

TEST, to generate
interesting inputs

© Don Thomas, 1998, Page 4

An Example

Module testAdd generates inputs for module halfAdd and
displays changes. Module halfAdd is the design

module tBench;
wire su, co, a, b;

halfAdd ad(su, co, a, b);
testAdd tb(a, b, su, co);

module testAdd(a, b, sum, cOut);
input sum, cOut;
output a, b;
reg a, b;

13© Don Thomas, 1998, 13

(, , ,);
endmodule

module halfAdd (sum, cOut, a, b);
output sum, cOut;
input a, b;

xor #2 (sum, a, b);
and #2 (cOut, a, b);

endmodule

initial begin
$monitor ($time,,

“a=%b, b=%b, sum=%b, cOut=%b”,
a, b, sum, cOut);

a = 0; b = 0;
#10 b = 1;
#10 a = 1;
#10 b = 0;
#10 $finish;

end
endmodule

module testAdd(a, b, sum, cOut);
input sum, cOut;
output a, b;
reg a, b;

initial begin
$monitor ($time,,

“a=%b, b=%b, sum=%b, cOut=%b”,

The test module
� It’s the test generator

� $monitor
� prints its string when executed.

� after that, the string is printed
when one of the listed values
changes.

� only one monitor can be active
at any time

14© Don Thomas, 1998, 14

, , , ,
a, b, sum, cOut);

a = 0; b = 0;
#10 b = 1;
#10 a = 1;
#10 b = 0;
#10 $finish;

end
endmodule

� prints at end of current
simulation time

� Function of this tester
� at time zero, print values and set

a=b=0

� after 10 time units, set b=1

� after another 10, set a=1

� after another 10 set b=0

� then another 10 and finish

Another Version of a Test Module

�Multi-bit constructs
� test is a two-bit register

and output

� It acts as a two-bit
number (counts 00-01-
10-11-00…)

� Module tBench needs
to connect it correctly

mod halfAdd has 1

module testAdd (test, sum, cOut);
input sum, cOut;
output [1:0] test;
reg [1:0] test;

initial begin
$monitor ($time,,

"test=%b, sum=%b, cOut=%b",
test, sum, cOut);

t t 0

15© Don Thomas, 1998, 15

— mod halfAdd has 1-
bit ports.

test = 0;
#10 test = test + 1;
#10 test = test + 1;
#10 test = test + 1;
#10 $finish;

end
endmodule

module tBench;
wire su, co;
wire [1:0] t;

halfAdd ad (su, co, t[1], t[0]);
testAdd tb (t, su, co);

endmodule
Connects bit 0 of wire t to this port
(b of the module halfAdder)

Yet Another Version of testAdd

�Other
procedural
statements
� You can use

“for”, “while”,
“if-then-else”
and others
here.

Thi k it

module testAdd (test, sum, cOut);
input sum, cOut;
output [1:0] test;
reg [1:0] test;

initial begin
$monitor ($time,,

"test=%b, sum=%b, cOut=%b",
test, sum, cOut);

f (t t 0 t t < 3 t t t t + 1)

16© Don Thomas, 1998, 16

� This makes it
easier to write if
you have lots of
input bits.

module tBench;
wire su, co;
wire [1:0] t;

halfAdd ad (su, co, t[1], t[0]);
testAdd tb (t, su, co);

endmodule

for (test = 0; test < 3; test = test + 1)
#10;

#10 $finish;
end

endmodule

hmm… “<3” … ?

© Don Thomas, 1998, Page 5

Other things you can do

�More than modeling hardware
� $monitor — give it a list of variables. When one of them changes, it prints

the information. Can only have one of these active at a time.
e.g. …

- $monitor ($time,,, “a=%b, b=%b, sum=%b, cOut=%b”,a, b, sum, cOut);

extra commas
print as spaces

%b is binary (also,
%h, %d and others) What if what you

17© Don Thomas, 1998, 17

- The above will print:
2 a=0, b=0, sum=0, cOut=0<return>

� $display() — sort of like printf()

- $display (“Hello, world — %h”, hexvalue)

,)

newline
automatically

included

display contents of data item called
“hexvalue” using hex digits (0-9,A-F)

What if what you
print has the
value x or z?

Structural vs Behavioral Models

�Structural model
� Just specifies primitive gates and wires

� i.e., the structure of a logical netlist

� You basically know how to do this now.

�Behavioral model
� More like a procedure in a programming language

18© Don Thomas, 1998, 18

� More like a procedure in a programming language

� Still specify a module in Verilog with inputs and outputs...

� ...but inside the module you write code to tell what you want to have
happen, NOT what gates to connect to make it happen

� i.e., you specify the behavior you want, not the structure to do it

�Why use behavioral models
� For testbench modules to test structural designs

� For high-level specs to drive logic synthesis tools

How do behavioral models fit in?
�How do they work with

the event list and
scheduler?
� Initial (and always) begin

executing at time 0 in
arbitrary order

� They execute until they
come to a “#delay”
operator

module testAdd(a, b, sum, cOut);
input sum, cOut;
output a, b;
reg a, b;

initial begin
$monitor ($time,,

“a=%b, b=%b,
sum=%b, cOut=%b”,

19© Don Thomas, 1998, 19

p

� They then suspend, putting
themselves in the event list
10 time units in the future
(for the case at the right)

� At 10 time units in the
future, they resume
executing where they left
off.

�Some details omitted
� ...more to come

sum %b, cOut %b ,
a, b, sum, cOut);

a = 0; b = 0;
#10 b = 1;
#10 a = 1;
#10 b = 0;
#10 $finish;

end
endmodule

Two initial statements?
…
initial begin

a = 0; b = 0;
#5 b = 1;
#13 a = 1;

end
…
initial begin

#10 out = 0;
#8 out = 1;

1

0

1

0

1

a

b

out

20© Don Thomas, 1998, 20

� Things to note
� Which initial statement starts first?

� What are the values of a, b, and out when
the simulation starts?

� These appear to be executing concurrently
(at the same time). Are they?

#8 out 1;
end
…

0

0 10 18

out

© Don Thomas, 1998, Page 6

Two initial statements?
…
initial begin

a = 0; b = 0;
#5 b = 1;
#13 a = 1;

end
…
initial begin

#10 out = 0;
#8 out = 1;

1

0

1

0

1

a

b

out

21© Don Thomas, 1998, 21

� Things to note
� Which initial statement starts first?

� What are the initial values of a, b, and out
when the simulation starts?

� These appear to be executing concurrently
(at the same time). Are they?

#8 out 1;
end
…

0

0 10 18

out

They start at same time

Undefined (x)

Not necessarily

Behavioral Modeling

�Procedural statements are used
� Statements using “initial” and “always” Verilog constructs

� Can specify both combinational and sequential circuits

�Normally don’t think of procedural stuff as “logic”
� They look like C: mix of ifs, case statements, assignments …

� but there is a semantic interpretation to put on them to allow them

22© Don Thomas, 1998, 22

� … but there is a semantic interpretation to put on them to allow them
to be used for simulation and synthesis (giving equivalent results)

Behavioral Constructs

�Behavioral descriptions are introduced by initial and
always statements

initial
Starts when
simulation

starts

Execute once
and stop

Not used in
synthesis

Statement Starts How it works Use in Synthesis?Looks like

initial
begin
…
end

23© Don Thomas, 1998, 23

�Points:
� They all execute concurrently

� They contain behavioral statements like if-then-else, case, loops,
functions, …

always

starts
Continually loop—
while (sim. active)

do statements;

Used in
synthesis

always
begin
…
end

Statements, Registers and Wires
�Registers

� Define storage, can be more than
one bit

� Can only be changed by assigning
value to them on the left-hand side
of a behavioral expression.

�Wires (actually “nets”)
� Electrically connect things

t th

module silly (q, r);
reg [3:0] a, b;
wire [3:0] q, r;

always begin
…

Logic with
registers
and wires

Multi-bit
registers
and wires

24© Don Thomas, 1998, 24

together

� Can be used on the right-hand
side of an expression

- Thus we can tie primitive
gates and behavioral blocks
together!

�Statements
� left-hand side = right-hand side

� left-hand side must be a register

� Four-valued logic

a = (b & r) | q;
…
q = b;
…

end
endmodule

Can’t do — why?

© Don Thomas, 1998, Page 7

Behavioral Statements
� if-then-else

� What you would expect, except that it’s
doing 4-valued logic. 1 is interpreted as
True; 0, x, and z are interpreted as False

� case
� What you would expect, except that it’s

doing 4-valued logic

� If “selector” is 2 bits, there are 42 possible
case-items to select between

if (select == 1)
f = in1;

else f = in0;

25© Don Thomas, 1998, 25

case-items to select between

� There is no break statement — it is
assumed.

� Funny constants?
� Verilog allows for sized, 4-valued

constants

� The first number is the number of bits, the
letter is the base of the following number
that will be converted into the bits.

8’b00x0zx10

case (selector)
2’b00: a = b + c;
2’b01: q = r + s;
2’bx1: r = 5;
default: r = 0;

endcase

assume f, a, q, and r
are registers for this
slide

Behavioral Statements

� Loops
� There are restrictions on using these for synthesis — don’t.

� They are mentioned here for use in test modules and behavioral
models not intended for synthesis

� Two main ones — for and while
� Just like in C

� There is also repeat and forever

26© Don Thomas, 1998, 26

p
reg [3:0] testOutput, i;
…
for (i = 0; i <= 15; i = i + 1) begin

testOutput = i;
#20;

end

reg [3:0] testOutput, i;
…
i = 0;
while (i <= 15)) begin

testOutput = i;
#20 i = i + 1;

end

Important: Be careful with loops. Its easy to create infinite loop
situations. More on this later.

Test Module, continued
�Bit Selects and Part Selects

� This expression extracts bits or ranges of bits or a wire or register

module top;
wire w0, w1, w2, w3;

testgen t (w0, w1, w2, w3);
design d (w0, w1, w2, w3);
end

The individual bits of register i
are made available on the ports.
These are later connected to
individual input wires in module
design.

27© Don Thomas, 1998, 27

module testgen (i[3], i[2], i[1], i[0]);
reg [3:0] i; output i;
always

for (i = 0; i <= 15; i = i + 1)
#20;

endmodule

module design (a, b, c, d);
input a, b, c, d;

mumble, mumble, blah, blah;
end

A
lt

e
rn

a
te

:

module testgen (i);
reg [3:0] i; output i;
always

for (i = 0; i <= 15; i = i + 1)
#20;

endmodule

module top;
wire [3:0] w;

testgen t (w);
design d (w[0], w[1], w[2], w[3]);
end

Concurrent Constructs
�We already saw #delay

�Others
� @ … Waiting for a change in a value — used in synthesis

- @ (var) w = 4;

- This says wait for var to change from its current value. When it
does, resume execution of the statement by setting w = 4.

� Wait … Waiting for a value to be a certain level — not used in
synthesis

28© Don Thomas, 1998, 28

- wait (f == 0) q = 3;

- This says that if f is equal to zero, then continue executing and
set q = 3.

- But if f is not equal to zero, then suspend execution until it does.
When it does, this statement resumes by setting q = 3.

�Why are these concurrent?
� Because the event being waited for can only occur as a result of the

concurrent execution of some other always/initial block or gate.

� They’re happening concurrently

© Don Thomas, 1998, Page 8

FAQs: behavioral model execution
�How does an always or initial statement start

� That just happens at the start of simulation — arbitrary order

�Once executing, what stops it?
� Executing either a #delay, @event, or wait(FALSE).

� All always blocks need to have at least one of these. Otherwise, the
simulator will never stop running the model -- (it’s an infinite loop!)

�How long will it stay stopped?
� Until the condition that stopped it has been resolved

29© Don Thomas, 1998, 29

� Until the condition that stopped it has been resolved

- #delay … until the delay time has been reached

- @(var) … until var changes

- wait(var) … until var becomes TRUE

�Does time pass when a behavioral model is executing?
� No. The statements (if, case, etc) execute in zero time.

� Time passes when the model stops for #, @, or wait.

�Will an always stop looping?
� No. But an initial will only execute once.

Using a case statement

� Truth table method
� List each input combination

� Assign to output(s) in each
case item.

�Concatenation
� {a, b, c} concatenates a, b,

and c together, considering
th i l it

module fred (f, a, b, c);
output f;
input a, b, c;
reg f;

always @ (a or b or c)
case ({a, b, c})

3’b000: f = 1’b0;

30© Don Thomas, 1998, 30

them as a single item

� Example

a = 4’b0111

b = 6’b 1x0001

c = 2’bzx

then {a, b, c} =
12’b01111x0001zx

3’b001: f = 1’b1;
3’b010: f = 1’b1;
3’b011: f = 1’b1;
3’b100: f = 1’b1;
3’b101: f = 1’b0;
3’b110: f = 1’b0;
3’b111: f = 1’b1;

endcase
endmodule

Check the rules …

How about a Case Statement Ex?

�Here’s another version ...

module fred (f, a, b, c);
output f;
input a, b, c;
reg f;

always @ (a or b or c)
case ({a, b, c})

module fred (f, a, b, c);
output f;
input a, b, c;

check the rules…

Could put

31© Don Thomas, 1998, 31

case ({a, b, c})
3’b000: f = 1’b0;
3’b001: f = 1’b1;
3’b010: f = 1’b1;
3’b011: f = 1’b1;
3’b100: f = 1’b1;
3’b101: f = 1’b0;
3’b110: f = 1’b0;
3’b111: f = 1’b1;

endcase
endmodule

p , , ;
reg f;

always @ (a or b or c)
case ({a, b, c})

3’b000: f = 1’b0;
3’b101: f = 1’b0;
3’b110: f = 1’b0;
default: f = 1’b1;

endcase
endmodule

Important: every control path is specified

a
function
here too

Two inputs, Three outputs
reg [1:0] newJ;
reg out;
input i, j;
always @(i or j)

case (j)
2’b00: begin

newJ = (i == 0) ? 2’b00 : 2’b01;
out = 0;

end
2’b01 : begin Works like the C Works like the C

32© Don Thomas, 1998, 32

g
newJ = (i == 0) ? 2’b10 : 2’b01;
out = 1;

end
2’b10 : begin

newJ = 2’b00;
out = 0;

end
default: begin

newJ = 2’b00;
out = 1'bx;

end
endcase

conditional operator.

(expr) ? a : b;

If the expr is true,
then the resulting
value is a, else it’s b.

conditional operator.

(expr) ? a : b;

If the expr is true,
then the resulting
value is a, else it’s b.

© Don Thomas, 1998, Page 9

Behavioral Timing Model (Not fully detailed here)

�How does the behavioral model advance time?
� # — delaying a specific amount of time

� @ — delaying until an event occurs (“posedge”, “negedge”, or any
change)

- this is edge-sensitive behavior

� wait — delaying until an event occurs (“wait (f == 0)”)

- this is level sensitive behavior

33© Don Thomas, 1998, 33

�What is a behavioral model sensitive to?
� any change on any input? — No

� any event that follows, say, a “posedge” keyword

- e.g. @posedge clock

- Actually “no” here too. — not always

What are behavioral models sensitive to?

�Quick example
� Gate A changes its output, gates B and C are evaluated to see if their

outputs will change, if so, their fanouts are also followed…

� The behavioral model will only execute if it was waiting for a change
on the A input

always @(A) This would execute

34© Don Thomas, 1998, 34

Behavioral
model

A

B

C

A

begin
B = ~A;

end

always @(posedge clock)
Q <= A;

This wouldn’t

…

Order of Execution

� In what order do these models execute?
� Assume A changes. Is B, C, or the behavioral model executed first?

- Answer: the order is defined to be arbitrary

� All events that are to occur at a certain time will execute in an
arbitrary order.

� The simulator will try to make them look like they all occur at the
same time — but we know better.

35© Don Thomas, 1998, 35

Behavioral
model

A

B

C

A

always @(A)
begin

yadda yadda
end

Arbitrary Order? Oops!

�Sometimes you need to
exert some control
� Consider the

interconnections of this D-
FF

� At the positive edge of c,
what models are ready to
execute?

module dff(q, d, c);
…
always @(posedge c)

q = d;
endmodule

module sreg (…);
…
dff a (q0, shiftin, clock),

36© Don Thomas, 1998, 36

� Which one is done first?

b (q1, q0, clock),
c (shiftout, q1, clock);

endmodule

QDQD QD

clock

shiftin shiftoutOops — The order of
execution can matter!

© Don Thomas, 1998, Page 10

Behavioral Timing Model

�How does the behavioral model advance time?
� # — delaying a specific amount of time

� @ — delaying until an event occurs — e.g. @v

- “posedge”, “negedge”, or any change

- this is edge-sensitive behavior

- When the statement is encountered, the value v is sampled.

37© Don Thomas, 1998, 37

When v changes in the specified way, execution continues.

� wait — delaying until an event occurs (“wait (f == 0)”)

- this is level sensitive behavior

� While one model is waiting for one of the above reasons, other
models execute — time marches on

Wait

�Wait — waits for a level on a line
� How is this different from an “@” ?

�Semantics
� wait (expression) statement;

- e.g. wait (a == 35) q = q + 4;

� if the expression is FALSE, the process is stopped

- when a becomes 35 it resumes with q = q + 4

38© Don Thomas, 1998, 38

when a becomes 35, it resumes with q = q + 4

� if the expression is TRUE, the process is not stopped

- it continues executing

�Partial comparison to @ and #
� @ and # always “block” the process from continuing

� wait blocks only if the condition is FALSE

An example of wait

module handshake (ready, dataOut, …)
input ready;
output [7:0] dataOut;
reg [7:0] someValueWeCalculated;

always begin

module handshake (ready, dataOut, …)
input ready;
output [7:0] dataOut;
reg [7:0] someValueWeCalculated;

always begin ready

39© Don Thomas, 1998, 39

always begin
wait (ready);
dataOut = someValueWeCalculated;
…
wait (~ready)
…

end
endmodule

always begin
wait (ready);
dataOut = someValueWeCalculated;
…
wait (~ready)
…

end
endmodule

Do you always get the value right when ready goes
from 0 to 1? Isn’t this edge behavior?

Wait vs. While

�Are these equivalent?
� No: The left example is correct, the right one isn’t — it won’t work

� Wait is used to wait for an expression to become TRUE

- the expression eventually becomes TRUE because a variable in
the expression is changed by another process

� While is used in the normal programming sense

- in the case shown, if the expression is TRUE, the simulator will
continuously execute the loop Another process will never have

40© Don Thomas, 1998, 40

continuously execute the loop. Another process will never have
the chance to change “in”. Infinite loop!

- while can’t be used to wait for a change on an input to the
process. Need other variable in loop, or # or @ in loop.

module yes (in, …);
input in;
…

wait (in == 1);
…

endmodule

module no (in, …);
input in;
…

while (in != 1);
…

endmodule

© Don Thomas, 1998, Page 11

Blocking procedural assignments and #

�We’ve seen blocking assignments — they use =
� Options for specifying delay

#10 a = b + c;

a = #10 b + c;

� The differences:

The difference?

41© Don Thomas, 1998, 41

Note the action of the second one:

- an intra-assignment time delay

- execution of the always statement is blocked (suspended) in the
middle of the assignment for 10 time units.

- how is this done?

Events — @something

�Action
� when first encountered, sample the expression

� wait for expression to change in the indicated fashion

� This always blocks

�Examples

42© Don Thomas, 1998, 42

always @(posedge ck)
q <= d;

always @(hello)
a = b;

always @(hello or goodbye)
a = b;

always begin
yadda = yadda;
@(posedge hello or negedge goodbye)
a = b;
…

end

