Very Long Instruction Word (VLIW)
Architectures

55:132/22C:160
High Performance Computer Architecture

What Is VLIW?

¢ VLIW hardware is simple and straightforward,
+ VLIW separately directs each functional unit

| add r1,r2,r3 | load r4,r5+4 | mov 16,2 | mul r7,r8,r9

VLIW
Instruction
Execution

Coovright 2001, James C Hoe CMU and John P_Shen, Infel

Historical Perspective:
Microcoding, nanocoding (and RISC)

Macro micro microcode
c — —
Instructions sequencer store

L |

datapath control
1

nanocode
store

!

datapath control

Conviight 2001 James G Hoe CMU and John P_Shen lntel

Horizontal Microcode and VLIW

+ A generation of high-performance, application-specific
computers relied on horizontally microprogrammed
computing engines.

Microsequencer
(2910)

Microcode Memory

Bit Bit Bit
Slice Slice Slice
ALU ALU ALU

¢ Aggressive (but tedious) hand programming at the
microcode level provided performance well above
sequential processors.

Conviight 2001 James C Hoe CMU and John P_Shen Intel

Principles of VLIW Operation

¢ Statically scheduled ILP architecture.
+ Wide instructions specify many independent simple operations.

| VLIW Instruction |
—————— 100 - 1000 bits ———————

+ Multiple functional units executes all of the operations in an
instruction concurrently, providing fine-grain parallelism within
each instruction

+ Instructions directly control the hardware with no interpretation
and minimal decoding.

+ A powerful optimizing compiler is responsible for locating and
extracting ILP from the program and for scheduling operations to
exploit the available parallel resources

The processor does not make any run-time control decisions
below the program level

Copvright 2001, James C Hoe CMU and John P_Shen, Intel

Formal VLIW Models

+ Josh Fisher proposed the first VLIW machine at Yale (1983)
¢ Fisher's Trace Scheduling algorithm for microcode
compaction could exploit more ILP than any existing
processor could provide.
¢ The ELI-512 was to provide massive resources to a single
instruction stream
- 16 processing clusters- multiple functional units/cluster.
- partial crossbar interconnect.
- multiple memory banks.
- attached processor — no I/O, no operating system.
¢ Later VLIW models became increasingly more regular
- Compiler complexity was a greater issue than originally envisioned

Coovright 2001, James C Hoe CMU and John P_Shen, Infel

Ideal Models for VLIW Machines

¢ Almost all VLIW research has been based upon an
ideal processor model.

This is primarily motivated by compiler algorithm
developers to simplify scheduling algorithms and
compiler data structures.

- This model includes:

» Multiple universal functional units
« Single-cycle global register file

and often:
« Single-cycle execution
« Unrestricted, Multi-ported memory
« Multi-way branching

and sometimes:
« Unlimited resources (Functional units, registers, etc.)

Conviight 2001 James G Hoe CMU and John P_Shen lntel

VLIW Execution Characteristics

Global Multi-Ported Register File

w 1w T g T g I

Functional Functional Functional Functional [
Unit Unit Unit Unit

"o

3 Ir&itruction :

or
I Condition Codes
Sequencer| =

Basic VLIW architectures are a generalized form of horizontally

microprogrammed machines
Coovright 2001 _James C _Hae CMUJ and Jobn P _Shen lntel

VLIW Design Issues

+ Unresolved design issues
- The best functional unit mix
- Register file and interconnect topology
- Memory system design
- Best instruction format
+ Many questions could be answered through
experimental research
- Difficult - needs effective retargetable compilers
¢ Compatibility issues still limit interest in general-purpose
VLIW technology

However, VLIW may be the only way to build 8-16
operation/cycle machines.

Copvright 2001, James C Hoe CMU and John P_Shen, Intel

Realistic VLIW Datapath

Multi-Ported Register File [« Multi-Ported Register File

T " T 8% w3

FAdd FMul FMul FDiv [
No Bypass!!| (1 cycle) 4 cyc pipe 4 cyc unpipd 16 cycle
No Stall!!

g Instruction
Memor

—J Condition Codes

Coovright 2001, James C Hoe CMU and John P_Shen, Infel

Scheduling for Fine-Grain Parallelism

The program is translated into primitive RISC-style
(three address) operations

+ Dataflow analysis is used to derive an operation
precedence graph from a portion of the original
program

¢ Operations which are independent can be scheduled
to execute concurrently contingent upon the
availability of resources

¢ The compiler manipulates the precedence graph
through a variety of semantic-preserving
transformations to expose additional parallelism

Conviight 2001 James G Hoe CMU and John P_Shen lntel

Example
= * A: rl=a+hb
e=(@+b)*(c+d N
b++; C. e=rl*r2
D: b=b+1
Original Program 3-Address Code
JONO
Dependency Graph
00: | add ab,r1 addcdrz | addbib |
01l: | mulrlr2,e nop | nop
VLIW Instructions

Conviight 2001 James C Hoe CMU and John P_Shen Intel

VLIW List Scheduling

*

Assign Priorities

¢ Compute Data Ready List - all operations whose predecessors
have been scheduled.

¢ Select from DRL in priority order while checking resource
constraints

¢ Add newly ready operations to DRL and repeat for next instruction

4-wide VLIW Data Ready List

1 1}

6 |3 |4 |5 |{23456}

9 [2 (7 |8 [{2789

12 |10 |11 {10,11,12}

13 {13}

Copvright 2001, James C Hoe CMU and John P_Shen, Intel

Enabling Technologies for VLIW

¢ VLIW Architectures achieve high performance
through the combination of a number of key enabling
hardware and software technologies.

- Optimizing Schedulers (compilers)
- Static Branch Prediction

- Symbolic Memory Disambiguation
- Predicated Execution

- (Software) Speculative Execution
- Program Compression

Coovright 2001, James C Hoe CMU and John P_Shen, Infel

Strengths of VLIW Technology

+ Parallelism can be exploited at the instruction level
- Available in both vectorizable and sequential programs.
+ Hardware is regular and straightforward

- Most hardware is in the datapath performing useful
computations.

- Instruction issue costs scale approximately linearly
Potentially very high clock rate
Architecture is “Compiler Friendly”
- Implementation is completely exposed - O layer of interpretation
- Compile time information is easily propagated to run time.
¢ Exceptions and interrupts are easily managed
¢ Run-time behavior is highly predictable
- Allows real-time applications.
- Greater potential for code optimization.

Conviight 2001 James G Hoe CMU and John P_Shen lntel

Weaknesses of VLIW Technology

*

No object code compatibility between generations

Program size is large (explicit NOPs)

Multiflow machines predated “dynamic memory
compression” by encoding NOPs in the instruction memory

¢ Compilers are extremely complex
- Assembly code is almost impossible
Philosophically incompatible with caching techniques
VLIW memory systems can be very complex
- Simple memory systems may provide very low performance
- Program controlled multi-layer, multi-banked memory
o Parallelism is underutilized for some algorithms.

*

L 2R 2

Conviight 2001 James C Hoe CMU and John P_Shen Intel

VLIW vs. Superscalar (gob rau, Hp)

Attributes Superscalar VLIW
Multiple instructions/cycle yes yes
Multiple operations/instruction | no yes
Instruction stream parsing yes no
Run-time analysis of register yes no
dependencies
Run-time analysis of memory | maybe occasionally
dependencies
Runtime instruction reordering | maybe no
(Resv. Stations)
Runtime register allocation maybe maybe
(renaming) (iteration frames)

Copvright 2001, James C Hoe CMU and John P_Shen, Intel

Real VLIW Machines

¢ VLIW Minisupercomputers/Superminicomputers:
- Multiflow TRACE 7/300, 14/300, 28/300 [Josh Fisher]
- Multiflow TRACE /500 [Bob Colwell]
- Cydrome Cydra 5 [Bob Rau]
- IBM Yorktown VLIW Computer (research machine)
+ Single-Chip VLIW Processors:
- Intel iWarp, Philip’s LIFE Chips (research)
+ Single-Chip VLIW Media (through-put) Processors:
- Trimedia, Chromatic, Micro-Unity
¢ DSP Processors (TI TMS320C6x)

¢ Intel/HP EPIC IA-64 (Explicitly Parallel Instruction Comp.)
& Transmeta Crusoe (x86 on VLIW??)
¢ Sun MAJC (Microarchitecture for Java Computing)

Coovright

Why VLIW Now?

- %

Data
Instruction Cache
Cache 16 IPC

VLIW CPU
Instruction Data
Cache Cache

1 Billion Transistor 1 Billion Transistor
Superscalar Processor VLIW Processor

(1MB) (1.5MB)

¢ Nonscalability of Superscalar Processor
- ILP and complexity

+ Better compilation technology

Conviight 2001 James G Hoe CMU and John P_Shen lntel

Performance Obstacles of Superscalars

¢ Branches

- branch prediction helps, but penalty is still significant

- limits scope of dynamic and static ILP analysis + code motion
¢ Memory Load Latency

- CPU speed increases at 60% per year

- memory speed increases only 5% per year
¢ Memory Dependence

- disambiguation is hard, both in hardware and software
¢ Sequential Execution Semantics ISAs

- total ordering of all the instructions

- implicit inter-instruction dependences

Very expensive to implement wide dynamic superscalars

Conviight 2001 James C Hoe CMU and John P_Shen Intel

Intel/HP EPIC/IA-64 Architecture

¢ EPIC (Explicitly Parallel Instruction Computing)
- An ISA philosophy/approach
e.g. CISC, RISC, VLIW
- Very closely related to but not the same as VLIW
¢ |IA-64
- An ISA definition
e.g. IA-32 (was called x86), PA-RISC
- Intel's new 64-bit ISA
- An EPIC type ISA
< [tanium (was code named Merced)
- A processor implementation of an ISA
e.g. P6, PA8500
- The firstimplementation of the IA-64 ISA

Copvright 2001, James C Hoe CMU and John P_Shen, Intel

IA-64 EPIC vs. Classic VLIW

¢ Similarities:
- Compiler generated wide instructions
- Static detection of dependencies
- ILP encoded in the binary (a group)
- Large number of architected registers
+ Differences:
- Instructions in a bundle can have dependencies
- Hardware interlock between dependent instructions

- Accommodates varying number of functional units and
latencies

Allows dynamic scheduling and functional unit binding
Static scheduling are “suggestive” rather than absolute
= Code compatibility across generations

but software won't run at top speed until it is recompiled so
“shrink-wrap binary” might need to include multiple builds

Coovright 2001, James C Hoe CMU and John P_Shen, Infel

