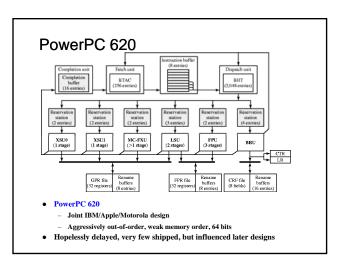
Case Studies: Mainstream Superscalar Architectures--The PowerPC 620 and Intel P6

55:132/22C:160 Spring 2011


PowerPC 620 Case Study

- First-generation out-of-order processor
- Developed as part of Apple-IBM-Motorola alliance
- Aggressive goals, targets
- Interesting microarchitectural features
- Hopelessly delayed
- Led to future, successful designs

IBM/Motorola/Apple Alliance

- Alliance begun in 1991 with a joint design center (Somerset) in Austin
 - Ambitious objective: unseat Intel on the desktop
 - Delays, conflicts, politics...hasn't happened, alliance largely dissolved today PowerPC 601
- - Quick design based on RSC compatible with POWER and PowerPC
- PowerPC 603
 - Low power implementation designed for small uniprocessor systems
 - 5 FUs: branch, integer, system, load/store, FP
- PowerPC 604
 - 4-wide machine
 - 6 FUs, each with 2-entry RS
- PowerPC 620
 - First 64-bit machine, also 4-wide Same 6 FUs as 604

 - Next slide, also chapter 5 in the textbook
- PowerPC G3, G4
 - Newer derivatives of the PowerPC 603 (3-issue, in-order)
 - Added Altivec multimedia extensions

PowerPC 620 Pipeline

Fetch stage						
Instruction buffer (8)						
Dispatch stage						
	XSU0	XSU1	MC-FXU	LSU	FPU	BRU
Reservation stations (6)						
Execute stage(s)						
Completion buffer (16)						
Complete stage						
Writeback stage						

- Fetch stage
 4-wide, BTAC simple predictor
 Instruction Buffer
 Decouples fetch from dispatch stalls
 Holds up to 8 instructions

PowerPC 620 Pipeline

Fetch stage						
Instruction buffer (8)						
Dispatch stage						
	XSU0	XSU1	MC-FXU	LSU	FPU	BRU
Reservation stations (6)						
Execute stage(s)						
Completion buffer (16)						
Complete stage						
Writeback stage						

- Dispatch Stage
 Rename

 - Allocate: rename buffer, completion buffer

 - Dispatch to reservation station
 Branches: resolve (if operands avail.) or predict with BHT
- Reservation Stations
 2 to 4 entries per functional unit, depending on type
 RS holds instruction payload, operands

PowerPC 620 Pipeline

Fetch stage						
Instruction buffer (8)						
Dispatch stage						
	170110			LSU	- FRA	BRU
	XSU0	XSU1	MC-FXU		FPU	
Reservation stations (6)						
Execute stage(s)						
Completion buffer (16)						
Complete stage						
Writeback stage						

- Execute Stage
 - Six functional units
- Execute, bypass to waiting RS entries, write rename buffer
 Completion Buffer
- - Sixteen entries, holds instruction state until in-order completion

PowerPC 620 Pipeline

Fetch stage						
Instruction buffer (8)						
Dispatch stage						
				LSU		BRU
	XSU0	XSU1	MC-FXU		FPU	
Reservation stations (6)						
$\textbf{Execute} \ stage(s)$						
Completion buffer (16)						
Complete stage						
Writeback stage						

- Complete Stage
 - Maintains precise exceptions by buffering out-of-order instructions
- 4-wide
 Writeback Stage
 - In-order writeback: results copied from rename buffer to architected register file

Benchmark Performance

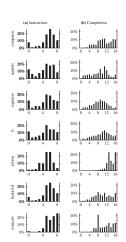
Benchmarks	Dynamic Instructions	Execution Cycles	IPC
compress	6,884,247	6,062,494	1.14
Eqntott	3,147,233	2,188,331	1.44
espresso	4,615,085	3,412,653	1.35
Li	3,376,415	3,399,293	0.99
alvinn	4,861,138	2,744,098	1.77
hydro2d	4,114,602	4,293,230	0.96
tomcatv	6,858,619	6,494,912	1.06

Branch Prediction

- Two-phase branch prediction BTAC

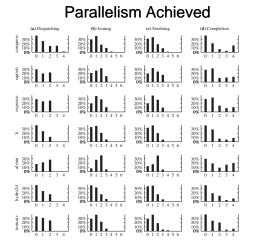
 - Holds targets of taken branches only
 On miss, fetch sequential (not-taken) path
 Accessed in single cycle in fetch stage
 - Generates fetch address for next cycle
 256 entries, 2-way set-associative
 BHT
 - - Accessed in dispatch stage2048 entries of 2-bit counters (bimodal)
 - Also attempts to resolve branches at dispatch
- Interactions
 - {BTAC right, wrong} x {BHT right, wrong} = 4 cases- BHT overrides BTAC

Branch Prediction Accuracy


Overall Branch Prediction Accuracy	88.57%	90.46%	89.36%	91.28%	99.07%	94.18%	97.95%
BTAC Correct and BHT Incorrect	0.00%	0.12%	0.37%	0.26%	0.00%	0.08%	0.00%
BTAC Incorrect and BHT Correct	0.01%	0.79%	1.13%	7.78%	0.07%	0.19%	0.00%
Incorrect	11.43%	9.54%	10.64%	8.72%	0.92%	5.82%	2.05%
Correct	68.86%	72.16%	72.27%	62.45%	81.58%	68.00%	52.56%
BHT Prediction Resolved	19.71%	18.30%	17.09%	28.83%	17.49%	26.18%	45.39%
Incorrect	15.90%	17.36%	18.01%	25.30%	5.51%	11.69%	6.69%
BTACPrediction Correct	84.10%	82.64%	81.99%	74.70%	94.49%	88.31%	93.31%
Taken	59.65%	68.16%	59.95%	66.91%	93.62%	82.49%	93.88%
Not Taken	40.35%	31.84%	40.05%	33.09%	6.38%	17.51%	6.12%
BranchResolution	compress	eqntott	espresso	li	alvinn	hydro2d	tomcatv

Wasted Fetch Cycles

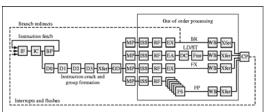
Benchmark	Misprediction	I-Cache Miss
compress	6.65%	0.01%
eqntott	11.78%	0.08%
espresso	10.84%	0.52%
li	8.92%	0.09%
alvinn	0.39%	0.02%
hydro2d	5.24%	0.12%
tomcatv	0.68%	0.01%


Buffer Utilization

- Instruction buffer
 - Decouples fetch/dispatch
- Completion buffer
 - Supports OOO execution

Dispatch Stalls Frequency of dispatch stall cycles. Sources of Dispatch Stalls compress equtott alvinn hvdro2d 0.00% 0.00% 0.00% 0.00% 0.00% 0.02% 31.50% 34.40% 22.81% 42.70% 36.51% 36.07% 22.36% Rename buffer saturation 24.06% 7.60% 13.93% 17.26% 1.36% 16.98% 34.13% 24.06% /.00% Completion buffer saturation 5.54% 3.64% Another to same unit 9.72% 20.51% 2.02% 4.27% 21.12% 7.80% No dispatch stalls 24.35% 41.40% 33.28% 30.06% 30.09% 17.33% 6.35%

Issue Stalls Frequency of issue stall cycles. Sources of Issue Stalls compress equators control cont alvinn hydro2d tomcaty 0.00% 0.00% 0.00% 0.00% 0.72% 11.03% 1.53% Serialization 1.69% 1.81% 3.21% 10.81% 0.03% 4.47% 0.01% Waiting for source 21.97% 29.30% 37.79% Waiting for execution unit 13.67% 3.28% 7.06% 11.01% 2.81% 1.50% 1.30% No issue stalls 62.67% 65.61% 51.94% 46.15% 78.70% 60.29% 93.64%


Summary of PowerPC 620

- First-generation OOO part
- Aggressive goals, poor execution
- Interesting contributions
 - Two-phase branch prediction (also in 604)
 - Short pipeline
 - Weak ordering of memory references
- PowerPC evolution
 - 1998: Power3 (630FP)
 - 2001: Power4
 - 2004: Power5

620 vs. Power3 vs. Power4

Attribute	620	Power3	Power4
Frequency	172 MHz	450 MHz	1.3 GHz
Pipeline depth	5+	5+	15+
Branch predictor	Bimodal BHT + BTAC	Same	3x16 1b combining
Fetch/issue/comple tion width	4/6/4	4/8/4	4/8/5
Rename/physical registers	8 Int, 8 FP	16 Int, 24 FP	80 Int, 72 FP
In-flight instructions	16	32	Up to 100
FP Units	1	2	2
Load/store units	1	2	2
Instruction Cache	32K 8w SA	32K 128w SA	64K DM
Data Cache	32K 8w SA	64K 128w SA	32K 2w SA
L2/L3 size	4M	16M	1.5M/32M
L2 bandwidth	1GB/s	6.4GB/s	100+ GB/s
Store queue entries	6 x 8B	16 x 8B	12 x 64B
MSHRs	I:1/D:1	I:2/D:4	1:2/D:8
Hardware prefetch	None	4 streams	8 streams

IBM Power4

- IBM POWER4, began shipping in 2001
 - Deep pipeline: 15 stages minimum
 - Aggressive combining branch prediction
 - Over 100 instructions in flight, tracked in 20 groups of 5 in ROB
 - Aggressive memory hierarchy, memory bandwidth

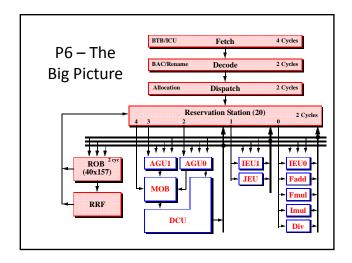
Case Study: Intel P6 (Pentium Pro)
Architecture

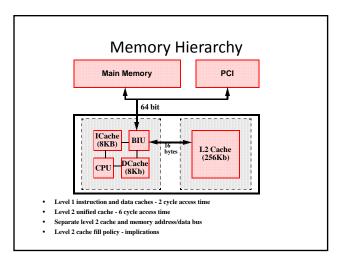
Pentium Pro Case Study

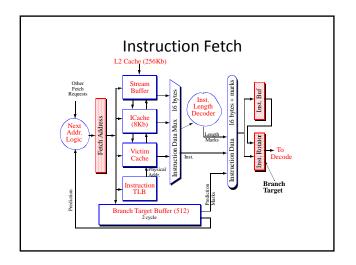
• Microarchitecture

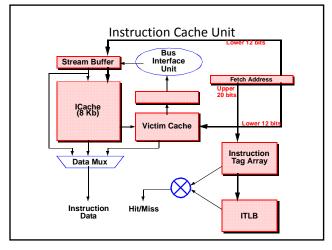
- Order-3 Superscalar
- Out-of-Order execution
- Speculative execution
- In-order completion
- Design Methodology
- Performance Analysis

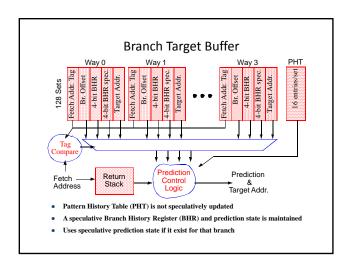
Goals of P6 Microarchitecture

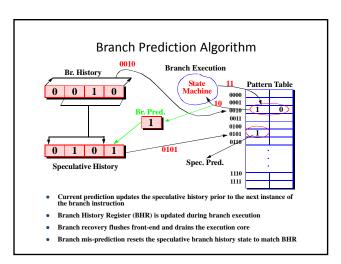

IA-32 Compliant

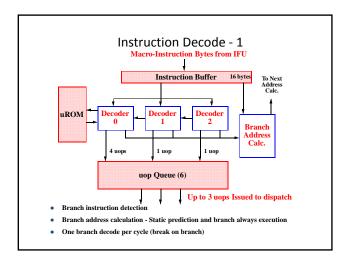

Performance (Frequency - IPC)

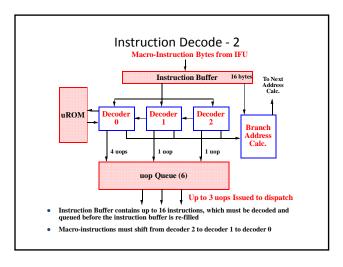

Validation

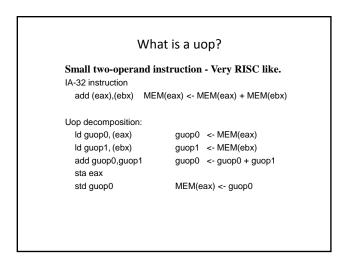

Die Size

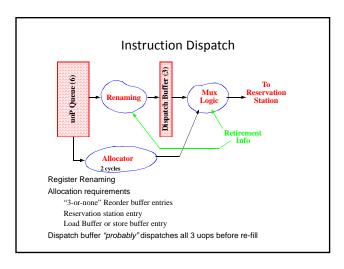

Schedule

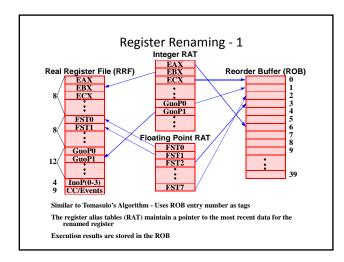


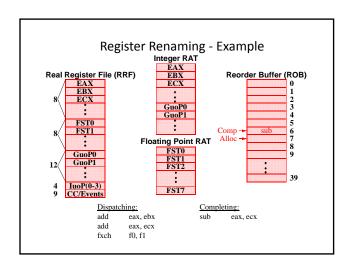


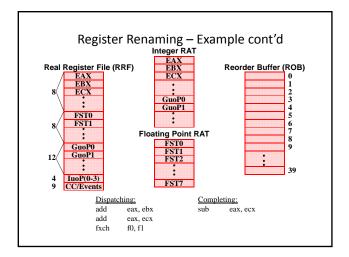


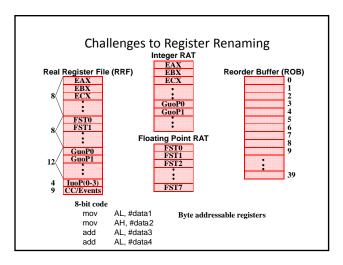




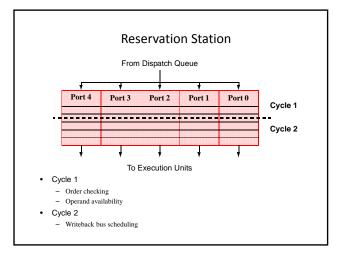


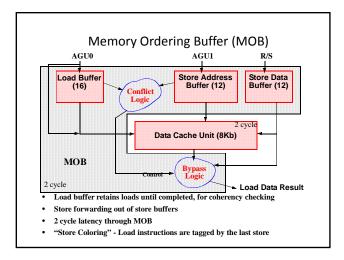


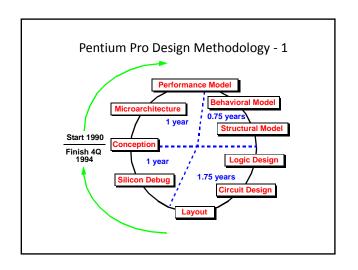




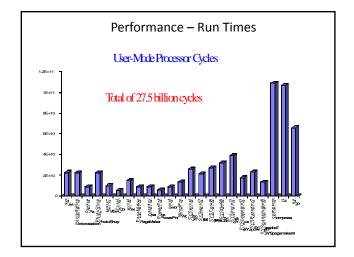


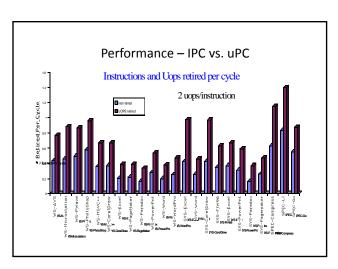


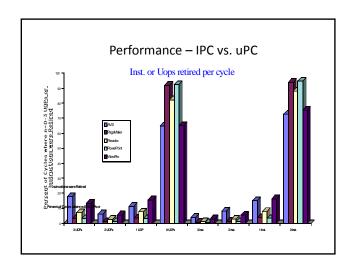


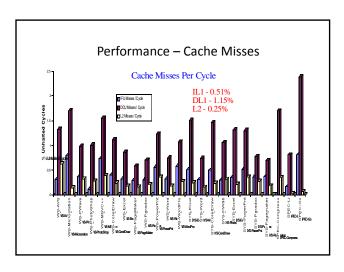


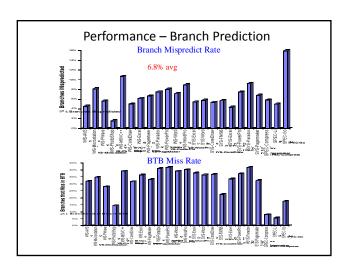
Instruction Completion • Handles all exception/interrupt/trap conditions · Handles branch recovery - OOO core drains out right-path instructions, commits to RRF - In parallel, front end starts fetching from target/fall-through - However, no renaming is allowed until OOO core is drained - After draining is done, RAT is reset to point to RRF Avoids checkpointing RAT, recovering to intermediate RAT state · Commits execution results to the architectural state in-order - Retirement Register File (RRF) Must handle hazards to RRF (writes/reads in same cycle) Must handle hazards to RAT (writes/reads in same cycle) "Atomic" IA-32 instruction completion - uops are marked as 1st or last in sequence exception/interrupt/trap boundary • 2 cycle retirement




Pentium Pro Performance Analysis


- Observability
 - On-chip event counters
 - Dynamic analysis


Benchmark Suite


- BAPco Sysmark32 32-bit Windows NT applications
- Winstone97 32-bit Windows NT applications
- Some SPEC95 benchmarks

