3/8/2011

Midterm Exam Information

Exam Date/Time: Thurs. March 10, in class
Exam format:
— Closed Book/ Closed notes
— One 8.5’ x 11” (on side) sheet of notes permitted
— Approx. 5 problems
— Questions will be problem-solving in nature
Exam will be based upon material covered in lecture
— Lecture Notes should be your primary study guide
— Relevant portions of text book:

¢ Appendices A & B

¢ Chapters 1and 2

— Canignore sections 1.5, 1.6, 1.7 and subsection on Value Prediction in
Chapter 2 (page 130)

Simple Performance Comparison

¢ Machine A is n times faster than machine B iff
perf(A)/perf(B) = time(B)/time(A) =n
* Machine A is x% faster than machine B iff
perf(A)/perf(B) = time(B)/time(A) = 1 + x/100
e E.g.time(A) = 10s, time(B) = 15s
— 15/10=1.5=> A is 1.5 times faster than B
— 15/10 = 1.5 => A is 50% faster than B

Processor Performance Equation

Time
Processor Performance = --------meee-
Program
Instructions Cycles Time
Program Instruction Cycle
(code size) (CPI) (cycle time)

PPE Example

¢ Machine A: clock 1ns, CPI 2.0, for program P
¢ Machine B: clock 2ns, CPI 1.2, for program P
e Which is faster and how much?

Time/Program = instr/program x cycles/instr x sec/cycle
Time(A) =N x2.0x1=2N

Time(B) =N x1.2x2=2.4N

Compare: Time(B)/Time(A) = 2.4N/2N = 1.2

* So, Machine A is 20% faster than Machine B for this
program

3/8/2011

Amdahl’s Law

(Originally formulated for vector processing)

No. of
Processors

fe— 1-f —

l .
Time

¢ f=fraction of program that is vectorizable
(1-f) = fraction that is serial
¢ N =speedup for vectorizable portion

Generalization of Amdahl’s Law

(To apply to any processor performance enhancement)

N4

Speedup due

to enhancement
fe— 1-f —

Time

o f =fraction of program that can take
advantage of the enhancement

¢ (1-f) = fraction that cannot take advantage
¢ N =speedup for enhanced portion

Amdahl’s Law Example

¢ An enhancement to a processor architecture is
proposed that would decrease the CPI for
floating point multiply instructions from 20
cycles to 1 cycle (a speedup of 20). The CPI of
all other instructions will be unchanged. What
will be the overall processor speedup resulting
from this modification?

Amdahl’s Law Example (continued)

Suppose that, in the original design, floating
point multiplies accounted for 6% of the total
execution time of a “typical program”

Then by Amdahl’s law the speedup due to the
enhanced floating point multiply will be

1
§= —— =106
(1-0.06) + 0.06/20

3/8/2011

Amdahl’s Law Example (continued)

Now suppose that, for a different program,
floating point multiplies account for 60% of
the total execution time in the original design

Then by Amdahl’s law the speedup due to the

enhanced floating point multiply (for this
particular program) will be

1

———— =233
(1-0.6)+0.6/20

Inputs i ge 1,
|1

Time req

Ideal Pipeline Performance

2 Outputs Oy,...,0,, O

Perfect Pipeline (N stages):

Note” For K >>N, the processing time approaches KT/N

—_

time T

Time required to process K inputs = KT

[T/ | T/NA | T/

[+T/N
Iy
l, I
|3 IZ Il
In Ina In2 Iy — 0O,

uired to processAk. inputs = (I.(“+ N-1)(T/N)

The Unified Pipeline

ALU instr.
Read Instr. From
1_Mem; PC++

LOAD instr.
Read Instr. From
1_Mem; PC++

STORE instr.

Read Instr. From
I_Mem; PC++

BRANCH instr.
Read Instr. From
1_Mem; PC++

Decode Instr. Decode Instr. Decode Instr. Decode Instr.

m Read Regs (Src. Read Reg (mem Read Regs (mem Read Reg
base addr; store (test reg)
operands) base addr.)
stag data)
Compute Branch
Target Address
ALY ALU Operation c°"xi“;fe'£em' C°"‘A‘:1”d‘fez’lem' (PC + displ.)
stag Test branch
condition
N
I MEM sta;} Memory Read Memory Write PC Update
Write Resultto Write Data to Dst.
= Dest. Reg Reg.

5 Steps of MIPS-like Datapath (corrected)

Instruction

Fetch
Next PC

. Instr. Decode

Execute
Reg. Fetch

Addr. Calc §

Memory

: Write
Access

i Back

Note: This is still not
quite right. Can you
see the problem?

3/8/2011

Visualizing Pipelining An Even Simpler View

Time (clock cycles) Clock cycle
1 2 3 4 5 6 7 8

I
n 3 v |-4HE: | Instr i+1 F | D | Ex [MEM | we
s ! E Instr i+2 F | D | EX |MEM | WB
4 .] Instr i+3 IF 1D EX | MEM | WB
’ P ERE
r rrercn| || [.ﬁ =
; =Etiais
’ JEmvspn oSy i

But, Pipelining is not quite that easy! Data Hazard on R1
¢ Limits to pipelining: Hazards prevent next instruction Time (clock cycles)

from executing during its designated clock cycle

— Structural hazards: HW cannot support this combination of

IF ID/RF EX MEM WwB

instructions (single person to fold and put clothes away) ﬁ add rl1,r2,r3 I IH [l DE
— Data hazards: Instruction depends on result of prior s
instruction still in the pipeline (missing sock) t | sub r4,r1,r3
— Control hazards: Caused by delay between the fetching of r
instructions and decisions about changes in control flow ol and r6,r1,r7
(branches and jumps). r
Z or rg8,rl,r9 |
r
xor r10,rl,ril freaT] IDE prer] {85

15 16

3/8/2011

Three Generic Data Hazards

e Read After Write (RAW)
Instr, tries to read operand before Instr, writes it
I: add r1,r2,r3
J: sub r4,r1,r3
* Caused by a “Dependence” (in compiler
nomenclature). This hazard results from an
actual need for communication.

Three Generic Data Hazards

¢ Write After Read (WAR)
Instr, writes operand before Instr, reads it
1: sub r4,r1,r3

J: add ri1,r2,r3
K: mul r6,rl,r7

 Called an “anti-dependence” by compiler writers.
This results from reuse of the name “r1”.
* Can’t happen in MIPS 5 stage pipeline because:
— Allinstructions take 5 stages, and
— Register Reads are always in stage 2, and
— Register Writes are always in stage 5

Three Generic Data Hazards

e Write After Write (WAW)
Instr; writes operand before Instr, writes it.
12 sub ri,r4,r3

J: add ri,r2,r3
K: mul r6,rl,r7

Called an “output dependence” by compiler writers
This also results from the reuse of name “r1”.

Can’ t happen in MIPS 5 stage pipeline because:
— Allinstructions take 5 stages, and
— Register Writes are always in stage 5
Will see WAR and WAW in more complicated pipes

Resolution of Pipeline Hazards

¢ Pipeline hazards
— Potential violations of program dependences
— Must ensure program dependences are not violated
e Hazard resolution
— Static: compiler/programmer guarantees correctness
— Dynamic: hardware performs checks at runtime
¢ Pipeline interlock
— Hardware mechanism for dynamic hazard resolution
— Must detect and enforce dependences at runtime

3/8/2011

Data Hazard Mitigation

Data Hazard on R1

S0 Q

and r6,r1,r7

or r8,rl,r9

xor rl0,rl1,rll

S0 Q

Time (clock cycles)
¢ A better response — forwarding add ri,r2,r3 | o | e | mem | we
— Also called bypassing I
. . . 71 sub r4,ri,r3 G
e Comparators ensure register is read after it is j
written r Stall ubbl@ubblgubbldéubbl
e Instead of stalling until write occurs o stall AN SV ot o
— Use mux to select forwarded value rather than 2,
register value e O B R
— Control mux with hazard detection logic r and r6,rl,r7 R IR N N
Forwarding to Avoid Data Hazards RAW Data Hazards Involving Loads
Time (clock cycles) Time (clock cycles)
I I
n | add ri,r2,r3fdd n | lw rl,10(r3) fre
s s
t t
r{sub r4,rl,r3 r

sub r4,r1,r3

and r6,r1,r7

or r8,rl,r9

siaflafe

24

xor rl0,r1,r1l

3/8/2011

RIS

SeQxQ

Data Hazard Even with Forwarding

Time (clock cycles)

Iwrl, 0(r2) =) B[rﬁ
sub r4,r1,r6
and r6,r1,r7

or r8,r1,r9

How is this detected?

._,
3
3
3
g
|

HW Change for Forwarding

z
o
sJa}s1bay X
S

Data

Memory

xnw

What circuit detects and resolves this hazard?

Control Dependences

Conditional branches

— Branch must execute to determine which instruction to fetch
next

— Instructions following a conditional branch are control
dependent on the branch instruction

Unconditional Branches (including subroutine calls

¢ Branch can’t take place until branch target address is
calculated

Exceptions

— Interrupts

— Hardware Exceptions

— Trap Instructions

Branch Stall Impact

If CPI =1, 30% branch,
Stall 3 cycles => new CPI = 1.9!
Two part solution:
— Determine branch outcome(taken/not-taken) sooner, AND
— Compute branch target address earlier
MIPS branch tests if register = 0 or 0
MIPS Solution:
— Move Zero test to ID/RF stage
— Adder to calculate new PC in ID/RF stage
— 1 clock cycle penalty for branch versus 3

3/8/2011

Pipelined MIPS Datapath

Memory { Write
Access : Back

Execute
Addr. Calc i

Instr. Decode
Reg. Fetch
Nesd

Instruction
Fetch

Next PC

WB Data

Four Branch Hazard Alternatives

#1: Stall until branch direction is clear

#2: Predict Branch Not Taken
— Execute successor instructions in sequence
— “Cancel” instructions in pipeline if branch actually taken
— Advantage of late pipeline state update
— 47% MIPS branches not taken on average
— PC+4 already calculated, so use it to get next instruction
#3: Predict Branch Taken
— 53% MIPS branches taken on average
— Buthaven’t calculated branch target address in MIPS
« MIPS still incurs 1 cycle branch penalty
* Other machines: branch target known before outcome

+ Interplay of instruction set design and cycle time.
*Hardware Cost: Additional Adder for BTA generation b w

Four Branch Hazard Alternatives

#4: Delayed Branch
— Define branch to take place AFTER following instruction(s)

branch instruction
Sequential Successon T Branch delay of length n

sequential successor,
___—— (branch shadow)

sequential successor,
branch target if taken

— 1slot delay allows proper decision and branch target address in 5 stage pipeline
— MIPS uses this

Scheduling Branch Delay Slots

A. From before branch B. From branch target C. From fall through

add $1,$2,$3 sub $4,%5,$6 add $1,%$2,%$3
it $2=0 then — if $1=0 then —
delay slot delay slot
elay slof add $1.$2.$3 elay slof
if $1=0 then
— delay slot sub $4,$5,$6+—
becomes l becomes 1 becomes l
add $1,%$2,%$3
if $2=0 then — if $1=0 then —
1,52, 4,95,
add $1,$2,53 add $1.$2.$3 sub $4,55,56
if $1=0 then
— sub $4,55,56 —

A is the best choice, fills delay slot & reduces instruction count (IC)
In B, the sub instruction may need to be copied, increasing IC
In B and C, must be okay to execute sub when branch fails

3/8/2011

Evaluating Branch Alternatives

Pipeline depth
1 +Branch frequency x Branch penalty

Pipeline speedup =

Assume 4% unconditional branch, 6% conditional branch- untaken, 10%
conditional branch-taken

Scheduling Branch cpPI speedup v. speedup v.

scheme penalty unpipelined stall
Stall pipeline 1 1.2 4.17 1.0
Predict not taken 1* 114 4.39 1.05
Delayed branch 0.5 1.10 4.55 1.09

* Only for wrong prediction

Assumes Branch Outcome determination and BTA generation in decode
stage, 50% of delay slots filled with useful instructions for delayed
branching

Limitations of Our Simple 5-stage Pipeline

e Assumes single cycle EX stage for all
instructions
* This is not feasible for
— Complex integer operations
e Multiply
* Divide
« Shift (possibly)
— Floating Point Operations

Shen, Lipasti)

Diversified Pipeline

intagar unit

Diversified Pipeline

/ ' - \\

FRintagar mutily

L i

B Il “\HHHHI/

= -""--'-'-’/ —J

3/8/2011

Problems with Diversified Pipeline

* Many more RAW hazard opportunities due to longer

fp instruction execution times
* New Structural Hazards:

— Divide instructions at distance < 25 (Due to non-

pipelined Divide Unit.

— Multiple Register Writes/Cycle due to variable

instruction execution times

e Qut-of-order instruction completion—Why is this a

problem?

e WAW Hazards are possible (WAR not possible. Why?)

Structural Hazard--FP Register Write Port

1 2 3 4 5 6 7 8 9 10 1
MUL.D F [o [M| m2|[wm3|ma|ms | me | m7 | mEm ﬁvn\
1+1 IF | D . ‘ . ‘ / \
1+2 F | ow [| e | e | \
ADD.D | F | D l AL | A2 ‘ A3 | A4 | MEM | wB
1+4 IF
145 | l Fo| o ‘ . .
LOAD.D F | D | Ex | MEm || we l

Shen, Lipasti

.

Three FP Register
Writes in Same Cycle

Diversified Pipeline--WAW Hazard

10
MEM

11
WB

‘ | F | ID [EX | MEM

Diversified pipeline—Out of Order Completion

DIV.D FO,F2,F4
ADD.D F2,F10,F8
LOAD.D F4,10(R3)

1 2 3 4 5 6 7 8 9 10 1
% | o [b1 [b2 b3 pa [ps| o6 | b7 | D8 | Do
IF | D | EX | AL [A2 | A3 ‘ A1 | MEM | ws
F | D | EX | MEM | wB

Note that both the ADD and LOAD complete before the DIV

Suppose a hardware exception occurs during the DIV, after stage 8.
What is the PC address of the exception?

Also note that the ADD and LOAD have overwritten the source
operands for the DIV so there is no way to restore the state before the

DIV

40

10

3/8/2011

Can the Compiler Help?

Loop: L.D FO,0(R1) ;FO=vector element
ADD.D F4,F0,F2;add scalar from F2
S.D 0(R1),F4 ;store result
DADDUI R1,R1,-8 ;decrement pointer 8B (DW)
BNEZ R1,Loop ;branch Rll!=zero

* Assume the following pipeline latencies:
¢ Ignore delayed branch in these examples

Instruction Instruction stalls between
producing result using result in cycles

FP ADD Another FP ALU op 3

FP ADD Store double 2

Load double FP ALU op 1

Load double Store double 0

Integer op Integer op 0

Reorganized Code to Reduce Stalls

Swap DADDUI and S.D by changing address of S.D:

1 Loop: L.D FO,0(R1)

2 DADDUI R1,R1,-8

ADD.D F4,F0,F2

stall

stall

S.D 8(R1),F4 ;altered offset when move DADUI
BNEZ R1,Loop

N o b w

Instruction Instruction Latency in
producing result using result clock cycles
FP ALU op Another FP ALU op 3

FP ALU op Store double 2

Load double FP ALU op 1

7 clock cycles, but just 3 for execution (L.D, ADD.D,S.D), 4 for loop overhead;
Can we(the compiler) do better?

41 42
Loop Unrolling to Improve Performance Loop Unrolling with Code Rearrangement
1 Loop:L.D FO,0(R1)
1 Loop:L.D F0,0(Rl)/l cycle stall 2 L.D F6.-8(R1)
3 ADD.D_F4,FO,F2 2 cycles stall 3 L.D F10,-16(R1)
6 S.D O(RL),F4 ;drop DADDUI & BNEZ 4 L.D F14,-24(R1)
7 L.D _ F6,-8(R1) 5 ADD.D F4,F0,F2
9 ADD.D F8,F6,F2 6 ADD.D F8,F6,F2
12 S.D -8(R1),F8 ;drop DADDUI & BNEZ 7 ADD.D F12,F10,F2
13 L.D F10,-16(R1) 8 ADD.D F16,F14,F2
15 ADD.D F12,F10,F2 9 S.D O(R1),F4
18 S.D -16(R1),F12 ;drop ADDUI & BNEZ 10 S.D -8(R1),F8
19 L.D F14,-24(R1) 11 s.D -16(R1),F12
21 ADD.D F16,F14,F2 12 DSUBUI R1,R1,#32
24 S.D -24(R1),F16 13 S.D 8(R1),F16 ; 8-32 = -24
25 DADDUI R1,R1,#-32 ;alter to 4*8 14 BNEZ R1,LOOP
26 BNEZ R1,LOOP 14 clock cycles, or 3.5 per iteration
27 clock cycles, or 6.75 per iteration
(Assumes R1 is multiple of 4)
a3 44

11

3/8/2011

Hardware-based Performance Optimization--
Dynamic Scheduling

Dynamic Scheduling Example

¢ Dynamic scheduling - hardware rearranﬁes the Consider:
instruction execution to reduce stalls while - i R4 <- RO + RS
maintaining data flow and exception behavior Reuse cycle |
— Handles cases when dependences unknown at For R4
compile time or =4 . .
— Allows the ﬁrocessor to tolerate unpredictable delays J: RO R4
such as cache misses, by executing other code while
waiting for the miss to resolve L
— Allows code to be compiled independently of details M k-
ofavgarticular pipelinepl inaep v ! k: R4 + R8
— Simplifies the compiler Another |
¢ Hardware speculation, a technique with Reuse cycle .
significant pperfor_mance advantg es, builds on For R4 I: R8 <-- R4 * R2
dynamic scheduling (more aboutthis later) L
RAW Hazards WAW Hazards
Dynamic Scheduling Example Dynamic Scheduling Example
Consider: Consider:
Mo R4 <-- RO + R8 ro R4 <-- RO + R8
Reuse cycle Reuse cycle
For R4 For R4
J: RO * R4 J: RO * R4
[k R4 + R8 kK RS- R4 + R8
Another Reuse cycle
Reuse cycle | ForR
For“}% A R8 <- Rx * R2 o I R8 <- Rx * R2

RAW Hazards WAW Hazards

RAW Hazards

12

3/8/2011

Dynamic Scheduling

Key idea: Allow instruction(s) following a stall to

proceed
DIVD FO,F2,F4
ADDD F10,FO,F8
SUBD F12,F8.F14

Enables out-of-order execution and allows out-
of-order completion (e.g., SUBD)

Will distinguish when an instruction begins
execution and when it completes execution;
between these times, the instruction is in
execution

Note: Dynamic execution creates WAR and WAW
hazards and makes exceptions harder

Dynamic Scheduling—Starting Point

¢ Split the ID pipe stage of simple 5-stage
pipeline into 2 stages:

e |ssue—Decode instructions, check for
structural hazards

e Read operands—Wait until no data
hazards, then read operands

Tomasulo’s Algorithm

Control & buffers distributed with Functional Units (FU)
— FU buffers called “reservation stations”; have pending
operands
Registers in instructions replaced by values or pointers to
reservation stations(RS); called register renaming ;
— Renaming avoids WAR, WAW hazards
— More reservation stations than registers, so can do

7

optimizations compilers can’t
Result forwarding via a Common Data Bus that broadcasts
results to all FUs

— Avoids RAW hazards by executing an instruction only when its
operands are available

Load and Stores treated as FUs with RSs as well

Integer instructions can %o past branches (predict taken),
allowing FP ops beyond basic block in FP queue

IBM 360/91 FPU

Storage Bus Instruction Unit

Floating Point
Bufers (FLB) -
g Floating
Point [}]
7 Operand Tags|
51 Control ek sy 7| Floating Point
FIOST Bits Registers (FLR)
1]
._—#
—
ore
FLB Bus
[l FLR Bus ¥ paa
. 7 o 7 4 Buffers (SDB)
V L g
g Sink [Tag| Sourcd C

g _Si [T Sl

Common Data Bus (CDB)

13

3/8/2011

i: R4 <-RO * R8
j:R2<-RO +R4
Example 3 !

CYCLE #1 k: R4 <-RO +R8

I: R8 <- R4 * R8
1D Tag Sink Tag Source 1D Tag Sink Tag Source BusyTag Data
1 4] | o 6.0
2 51 []] 2 %50
3 Mult/Div 4 A
[Muwon] 4 &

Adder

DISPATCHED INSTRUCTION(S):

CYCLE #2

ID 1ag sink Tag Source '° Tag Sink Tag Source BusyTag Data
1 4] I] o 5.0
2 I — 35
3 Mult/Div 4 I

CYCLE #3 DISPATCHED INSTRUCTION(S):

ID

Tag Sink Tag Source IDTag Sink Tag Source BusyTag Data
4 |
5[1 [] |

0
2
Mult/Div 4
8

DISPATCHED INSTRUCTION(S): 53

RN

Adder

Performance Enhancement—Better Branch
Prediction

e Accurate Branch Prediction becomes more
important with dynamic scheduling

— Dynamic scheduling may stall if it can’t look past
branch points

— Cost of misprediction may be high

Dynamic (Run-time) Branch Prediction

* Why does prediction work?
— Underlying algorithm has regularities
— Data that is being operated on has regularities
— Instruction sequence has redundancies that are
artifacts of way that humans/compilers think about
problems
* Is dynamic branch prediction better than static
branch prediction?
— Seems to be (most modern processor use it)

— There are a small number of important branches in
programs which have dynamic behavior

55

Dynamic Branch Prediction

Simplest Dynamic Predictor:
Branch History Table: Lower bits of PC address index table of 1-bit
values

Keeps track of whether or not branch taken last time

No address check

[E—
2BHT |
entries

k bit BHT address
0=Not Taken
1=Taken

Problem: in a loop, 1-bit BHT will cause two mispredictions (average
loop has only 9 iterations before exit):
End of loop case, when it exits instead of looping as before
First time through loop on next time through code, when it predicts
exit instead of looping
56

14

3/8/2011

Multi-bit Branch History

n-bit branch history

——
11..10

00...01 PC
01..10 m
2XBHT 00...00

entries <

k bit BHT address

11,00
plsismlily

In general, there is little performance improvement
Beyond n=2

A two-bit branch predictor

¢ Change prediction only if get misprediction twice

T

NT
Predict Taken T&Predict Taken
T NT NT
Predict Not T Predict Not

Taken Taken

NT
¢ Adds hysteresis to decision making process

* Many other two-bit prediction schemes are possible

Another two-bit branch predictor

¢ Two-bit saturating counter (Smith Predictor)

T
NT
Predict Taken - Predict Taken
P NT
Predict Not
Taken NT Predict Not
T Taken

NT

59

Correlated Branch Prediction

Idea: track the outcome of the m most recently executed
branches (globally), and use that pattern to select the proper
n-bit branch history table

In general, (m,n) predictor means use last m (global) branch
outcomes to select between 2™ history tables, each with n-bit
counters

— Thus, old 2-bit BHT is a (0,2) predictor

Global Branch History: m-bit shift register keeping T/NT status
of last m branches.

Each entry in table has m n-bit predictors (local branch
history).

60

15

3/8/2011

Example: A (2,2) Branch Predictor

(2,2) predictor

— Behavior of recent
branches selects

bits per branch predictor
between four
predictions of next
branch, updating just == Prediction

—
4
2-
that prediction (based upon

two-bit FSM)

2-bit global branch history

61

Tournament Branch Predictor

¢ Multilevel branch predictor

¢ Use n-bit saturating counter to choose between predictors

¢ Usual choice between global and local predictors

Predictor 1 /predictor 2
accuracy / accuracy N N
[e, 10, 1) om0, uny
0=mispredict L 1 !
1= correct predict
— . Use pracicior 2
T . T
o] T o w | ton
o
U proccson 1 Seen £
I
% "
0,11 0.1

© 2003 Elsevier Scencn (USA]. All ights reserved.

62

Branch Prediction—What about the Branch
Target Address(BTA)?

* Branch Prediction is of no value unless we know the BTA

¢ Branch target calculation is costly and stalls the
instruction fetch.

¢ A Branch Target Buffer (BTB) can store previously
computed BTAs

¢ The BTA of a taken branch is stored in the BTB

* For subsequent executions of this branch, the BTA can be
“looked up” in the BTB

o If the branch was predicted taken, instruction fetch
continues at the predicted PC

63

Branch Target Buffer (BTB)

P ol Insruction b feich
Jleock up Prodiciod PG

-f-i-mmlnm Beanch
Eranch; procesd normally precicing
taken or
os: then instnuction is branch and predicled untakan

PG shoudd b used 8 the next PG

Often, BTB is used in conjunction with Dynamic Prediction
* BTB provides fast prediction and BTA in fetch stage
¢ Dynamic Predictor provides more accurate prediction in decode stage

64

16

3/8/2011

BTB Flowchart

FPfinteger
multiply

Sequential
Bottleneck

Sequential

Bottleneck
FPfinteger
divider

5 20 i, 0 e et

Limitations of Scalar Pipelines

Scalar upper bound on throughput
—IPC<=1o0rCPI>=1

Inefficient unified pipeline

— Long latency for each instruction

Rigid pipeline stall policy

— One stalled instruction stalls all newer instructions
— Tomasulo’s algorithm alleviated this problem

Superscalar Pipeline

J
IF -]
I
D - |
|
RD [1 |
{ — =

wB I

17

3/8/2011

Challenge for Superscalar Pipes

* How to keep the pipeline operating at or near
full capacity?
— Wide instruction fetch gobbles up instructions at a
high rate
— Branches are encountered frequently
— Cost of stalls is much higher than for scalar
pipelines
¢ Branches pose the biggest challenge to
exploiting Instruction Level Parallelism (ILP)

Superscalar Pipelines—Exploiting ILP

¢ To maintain a steady stream of instructions to
feed functional units it is necessary to
maintain instruction fetch and execution
beyond branch points

* This leads to “speculative execution” of
instructions
— Accurate branch prediction is essential

— Must insure that wrong guesses don’t lead to
incorrect behavior

70

Speculation for greater ILP

e Greater ILP: Overcome control dependence
by hardware speculating on outcome of
branches and executing program as if
guesses were correct

— Speculation = fetch, issue, and execute instructions as if branch
predictions were always correct

— Dynamic scheduling = only fetches and issues instructions

¢ Essentially a data flow execution model:
Operations execute as soon as their
operands are available

Speculation for greater ILP

¢ 3 components of HW-based speculation:

1. Dynamic branch prediction to choose which
instructions to execute

2. Speculation to allow execution of
instructions before control dependences are
resolved
+ ability to undo effects of incorrectly speculated

sequence

3. Dynamic scheduling to deal with scheduling

of different combinations of basic blocks

18

3/8/2011

Adding Speculation to Tomasulo’s Algorithm Reorder Buffer operation

ion § . . ¢ Holds instructions in FIFO order, exactly as dispatched
L]
Must Iseparate fXECUtIPQ rom instruction ¢ When instructions complete, results placed into ROB
completion or “commit — Supplies operands to other instruction between execution
* This additional step called instruction commit complete & commit = more registers like RS

« When an instruction is no |0nger speculative, — Tag results with ROB buffer number instead of reservation station
 Instructions commit =values at head of ROB placed in registers

allow it to update the register file or memory
* Requires additional set of buffers to hold results * Asaresult, easy to undo —
of instructions that have finished execution but speculated instructions i
have not committed on mispredicted branches g';
. . or on exceptions /“‘u—|
* This reorder buffer (ROB) is also used to pass — Q“I P R:zgs
results among instructions that may be Commit path
speculated [Res Stations | Res Stations |
* _

Tomasulo With Reorder buffer: Speculation: Register Renaming vs. ROB
Done?
PO _ ¢ Alternative to ROB is a larger physical set of registers
P > ROB7 Newest X R . R
Queue ROB6 combined with register renaming
ROBS — Extended registers replace function of both ROB and reservation
RQB4 ;
Reorder Buffer = stations
7082 | oldest * Instruction issue maps names of architectural
Fo LD FO,10(R2) |N |roet registers to physical register numbers in extended
register set
Regisfer‘s To — Onissue, allocates a new unused register for the destination
Memory (which avoids WAW and WAR hazards)
Dest Dest Nrr‘om — Speculation recovery easy because a physical register holding an
emory instruction destination does not become the architectural register until
Desf’ the instruction commits
& Reservation 1 [L0+R2]
Stations * Most Out-of-Order processors today use extended
¥ registers with renaming

3/8/2011

Register Renaming Example

Rename Table

Available T register Queue

6

39

6

14

11: MULD FS5,FO,F2
12: ADDD F9,F5,F4
13: ADDD F5,F5,F2
14: DIVD F2,F9,FO

Dst=F5 21 Dst=T21 o oo
13 — Src1=F5 6 Src1=T8 ToT21—
Src2=F2 ; — Src2=T39 New reuse
Cycle for F5
9 10
. Architected Regs: FO, F1, F2,...
63 Rename Regs: T0, T1, T2, ...

Superscalar Pipeline Stages

] [] !nstruction Buffer
1]

[T [T T 1] Dispatch Buffer
7

Dispatch

[T T T T 'ssuing Buffer
T
.
.

Completion Buffer

LT T T Store Bufer

1]

Necessity of Instruction Dispatch

Instruction dispatching

~

N
~

A Dynamic Superscalar Processor

= Store buffer

20

3/8/2011

Avoiding Memory Hazards

¢ WAW and WAR hazards through memory are eliminated with
speculation because actual updating of memory occurs in
order, when a store is at head of the ROB, and hence, no
earlier loads or stores can still be pending

¢ RAW hazards through memory are maintained by two
restrictions:

1. not allowing a load to initiate the second step of its execution if any
active ROB entry occupied by a store has a Destination field that
matches the value of the A field of the load, and

2. maintaining the program order for the computation of an effective
address of a load with respect to all earlier stores.

¢ these restrictions ensure that any load that accesses a
memory location written to by an earlier store cannot
perform the memory access until the store has written the
data

Memory Data Dependences

“Memory Aliasing” = Two memory references involving the same memory
location (collision of two memory addresses).

“Memory Disambiguation” = Determining whether two memory
references will alias or not (whether there’is a dependence or not).
Memory Dependency Detection:

— Must compute effective addresses of both memory references

— Effective addresses can depend on run-time data and other instructions

— Comparison of addresses require much wider comparators

Example code:

(1) STORE Vv

(2 ADD
(3) LOAD w
(4) LOAD X
(5) LOAD v
(6) ADD

() STORE W

Conservative Approach: Maintain Total Order of
Loads and Stores

» Keep all loads and stores totally in order with respect to
each other.

* However, loads and stores can execute out of order with
respect to other types of instructions.

» Consequently, stores are held for all previous
instructions, and loads are held for stores.

— l.e. stores performed at commit point

— Sufficient to prevent wrong branch path stores since all prior
branches now resolved

Load Bypassing

Loads can be allowed to bypass stores (if no aliasing).

Two separate reservation stations and address
generation units are employed for loads and stores.

Store addresses still need to be computed before loads
can be issued to allow checking for load dependences. If
dependence cannot be checked, e.g. store address
cannot be determined, then all subsequent loads are
held until address is valid (conservative).

Stores are kept in ROB until all previous instructions
complete; and kept in the store buffer until gaining
access to cache port.

21

3/8/2011

Load Forwarding

 If a subsequent load has a dependence on a store
still in the store buffer, it need not wait till the
store is issued to the data cache.

¢ The load can be directly satisfied from the store
buffer if the address is valid and the data is
available in the store buffer.

¢ This avoids the latency of accessing the data cache.

Speculative Disambiguation

What if aliases are rare?

1. Loads don’t wait for addresses of
all prior stores

2. Full address comparison of stores
that are ready

3. Bypass if no match, forward if
match

4. Check all store addresses when

they commit [Reouersufler |

— No matching loads — speculation
was correct
— Matching unbypassed load —
incorrect speculation
5. Replay starting from incorrect
load

22

