
1

Chapter 5: Superscalar Techniques
Part 1: Instruction Flow

Modern Processor Design: Fundamentals of
Superscalar Processors

Instruction Flow Techniques

• Goal and Impediments

• Branch Types and Implementations

• What’s So Bad About Branches?

• What are Control Dependences?

• Impact of Control Dependences on
Performance

• Improving I-Cache Performance

Instruction Flow in Context

I-cache

FETCH

DECODE

COMMIT

D-cache

Branch
Predictor Instruction

Buffer

Store
Queue

Reorder
Buffer

Integer Floating-point Media Memory

Instruction

Register
Data

Memory
Data

Flow

EXECUTE

(ROB)

Flow

Flow

Goal and Impediments

• Goal of Instruction Flow
– Supply processor with maximum number of

useful instructions every clock cycle

• Impediments
– Branches and jumps
– I-Cache limitations

• hit rate
• width
• alignment
• etc.

2

Branch Types and
Implementation

1. Types of Branches
A. Conditional or Unconditional
B. Save PC? Save other processor state?
C. How is target computed?

• constant target (immediate, PC-relative)
• variable target (register, register + offset)

2. Branch Architectures
A. Condition code or condition registers
B. Register

What’s So Bad About
Branches?

• Effects of Branches
– Fragmentation of I-Cache lines
– Need to determine branch outcome
– Need to determine branch target
– Use up execution resources

What’s So Bad About
Branches?

Problem: Fetch stalls until outcome is determined

Solutions:
• Minimize delay

– Move instructions determining branch condition away
from branch

• Make use of delay
– Non-speculative:

• Fill delay slots with useful safe instructions
• Execute both paths (eager execution)

– Speculative:
• Predict branch outcome

What’s So Bad About
Branches?

Problem: Fetch stalls until branch target is determined
Solutions:
• Minimize delay

– Generate branch target early
• Make use of delay: Predict branch target

– Single target (constant—only need to compute
once)

– Multiple targets (variable—but may use
previous target value as prediction for next
time).

3

Control Dependences

• Control Flow Graph
– Shows possible paths of control flow through basic

blocks

BB 1

BB 2

BB 3 BB 4

BB 5

 main:
 addi r2, r0, A
 addi r3, r0, B
 addi r4, r0, C BB 1
 addi r5, r0, N
 add r10,r0, r0
 bge r10,r5, end
 loop:
 lw r20, 0(r2)
 lw r21, 0(r3) BB 2
 bge r20,r21,T1
 sw r21, 0(r4) BB 3
 b T2
 T1:
 sw r20, 0(r4) BB 4
 T2:
 addi r10,r10,1
 addi r2, r2, 4
 addi r3, r3, 4 BB 5
 addi r4, r4, 4
 blt r10,r5, loop
 end:

Control Dependences

• Control Dependence
– Node B is CD on Node A if A determines whether

B executes

BB 1

BB 2

BB 3 BB 4

BB 5

 main:
 addi r2, r0, A
 addi r3, r0, B
 addi r4, r0, C BB 1
 addi r5, r0, N
 add r10,r0, r0
 bge r10,r5, end
 loop:
 lw r20, 0(r2)
 lw r21, 0(r3) BB 2
 bge r20,r21,T1
 sw r21, 0(r4) BB 3
 b T2
 T1:
 sw r20, 0(r4) BB 4
 T2:
 addi r10,r10,1
 addi r2, r2, 4
 addi r3, r3, 4 BB 5
 addi r4, r4, 4
 blt r10,r5, loop
 end:

Limits on Instruction Level
Parallelism (ILP)

Weiss and Smith [1984] 1.58

Sohi and Vajapeyam [1987] 1.81

Tjaden and Flynn [1970] 1.86 (Flynn’s bottleneck)

Tjaden and Flynn [1973] 1.96

Uht [1986] 2.00

Smith et al. [1989] 2.00

Jouppi and Wall [1988] 2.40

Johnson [1991] 2.50

Acosta et al. [1986] 2.79

Wedig [1982] 3.00

Butler et al. [1991] 5.8

Melvin and Patt [1991] 6

Wall [1991] 7 (Jouppi disagreed)

Kuck et al. [1972] 8

Riseman and Foster [1972] 51 (no control dependences)

Nicolau and Fisher [1984] 90 (Fisher’s optimism)

Riseman and Foster’s Study
• 7 benchmark programs on CDC-3600
• Assume infinite machines

– Infinite memory and instruction stack
– Infinite register file
– Infinite functional units
– True dependencies only at dataflow limit

• If lookahead bounded to single basic block,
speedup is 1.72 (Flynn’s bottleneck)

• If one can bypass branches (hypothetically), then:
a theoretical ILP of 51 was determined by
Riseman and Foster

4

13

Program Control Flow
• Implicit Sequential Control Flow

– Static Program Representation
• Control Flow Graph (CFG)
• Nodes = basic blocks
• Edges = Control flow transfers

– Physical Program Layout
• Mapping of CFG to linear program memory
• Implied sequential control flow

– Dynamic Program Execution
• Traversal of the CFG nodes and edges (e.g. loops)
• Traversal dictated by branch conditions

– Dynamic Control Flow
• Deviates from sequential control flow
• Disrupts sequential fetching
• Can stall IF stage and reduce I-fetch bandwidth

14

Program Control Flow

• Dynamic traversal of
static CFG

• Mapping CFG to linear
memory

(a) (b)

15

Disruption of Sequential Control Flow

Instruction/Decode Buffer

Fetch

Dispatch Buffer

Decode

Reservation

Dispatch

Reorder/

Store Buffer

Complete

Retire

StationsIssue

Execute

Finish
Completion Buffer

Branch

16

Branch Prediction

• Target address generation → Target
Speculation
– Access register:

• PC, General purpose register, Link register

– Perform calculation:
• +/- offset, autoincrement, autodecrement

• Condition resolution → Condition speculation
– Access register:

• Condition code register, General purpose register

– Perform calculation:
• Comparison of data register(s)

5

17

Target Address Generation

Decode Buffer

Fetch

Dispatch Buffer

Decode

Reservation

Dispatch

Store Buffer

Complete

Retire

Stations
Issue

Execute

Finish Completion Buffer

Branch

PC-
rel.

Reg.
ind.

Reg.
ind.
with
offset

18

Condition Resolution

Decode Buffer

Fetch

Dispatch Buffer

Decode

Reservation

Dispatch

Store Buffer

Complete

Retire

Stations
Issue

Execute

Finish Completion Buffer

Branch

CC
reg.

GP
reg.
value
comp.

19

Branch Instruction Speculation

Decode Buffer

Fetch

Dispatch Buffer

Decode

Reservation

Dispatch

Stations
Issue

Execute

Finish Completion Buffer

Branch

to I-cache

PC(seq.) = FA (fetch address)
PC(seq.)Branch

Predictor
(using a BTB)

Spec. target

BTB
update

Prediction

(target addr.
and history)

Spec. cond.

 FA-mux

20

Branch/Jump Target Prediction

• Branch Target Buffer: small cache in fetch stage
– Previously executed branches, address, taken history, target(s)

• Fetch stage compares current FA against BTB
– If match, use prediction
– If predict taken, use BTB target

• When branch executes, BTB is updated
• Optimization:

– Size of BTB: increases hit rate
– Prediction algorithm: increase accuracy of prediction

Branch inst. Information Branch target
address for predict. address (most recent)

6

21

Branch Prediction: Condition Speculation

1. Biased Not Taken
– Hardware prediction
– Does not affect ISA
– Not effective for loops

2. Software Prediction
– Extra bit in each branch instruction

• Set to 0 for not taken
• Set to 1 for taken

– Bit set by compiler or user; can use profiling
– Static prediction, same behavior every time

3. Prediction based on branch offset
– Positive offset: predict not taken
– Negative offset: predict taken

4. Prediction based on dynamic history

22

UCB Study [Lee and Smith, 1984]
• Benchmarks used

– 26 programs (IBM 370, DEC PDP-11, CDC 6400)
– 6 workloads (4 IBM, 1 DEC, 1 CDC)
– Used trace-driven simulation

• Branch types
– Unconditional: always taken or always not taken
– Subroutine call: always taken
– Loop control: usually taken
– Decision: either way, if-then-else
– Computed goto: always taken, with changing target
– Supervisor call: always taken
– Execute: always taken (IBM 370)

IBM1 IBM2 IBM3 IBM4 DEC CDC Avg

T 0.64 0.65 0.70 0.54 0.73 0.77 0.67

NT 0.36 0.34 0.29 0.46 0.26 0.22 0.32

23

Branch Prediction Function

• Prediction function F(X1, X2, …)
– X1 – opcode type

– X2 – history

• Prediction effectiveness based on opcode only, or history

IBM1 IBM2 IBM3 IBM4 DEC CDC

Opcode
only

66 69 71 55 80 78

History 1 92 95 87 80 97 82

History 2 93 97 91 83 98 91

History 3 94 97 91 84 98 94

History 4 95 97 92 84 98 95

History 5 95 97 92 84 98 96

24

Example Prediction Algorithm

• Hardware table remembers last 2 branch outcomes
– History of past several branches encoded by FSM
– Current state used to generate prediction

• Results:

TT
T

N

T

NT
T

TN
T

TN
T

NN
N

N

T

T

N

T

N

TT
T

Branch inst. Information Branch target
address for predict. address

IBM1 IBM2 IBM3 IBM4 DEC CDC

93 97 91 83 98 91

7

25

Other Prediction Algorithms

• Combining prediction accuracy with BTB hit rate
(86.5% for 128 sets of 4 entries each), branch
prediction can provide the net prediction
accuracy of approximately 80%. This implies a
5-20% performance enhancement.

N

T
N

N

T

TN
T

n?

T

t

T

N

N

T

TN
T

t?

T

T N

n?

tt?

N
N

nn

T

26

IBM Study [Nair, 1992]

• Branch processing on the IBM RS/6000
– Separate branch functional unit
– Five different branch types

• b: unconditional branch
• bl: branch and link (subroutine calls)
• bc: conditional branch
• bcr: condor branch using link register (returns)
• bcc: conditional branch using count register

– Overlap of branch instructions with other
instructions

• Zero cycle branches

– Two causes for branch stalls
• Unresolved conditions
• Branches downstream too close to unresolved branches

27

Branch Instruction Distribution

% of each branch type % bc with penalty
cycles

Benchmark b bl bc bcr 3 cyc 2 cyc 1 cyc

spice2g6 7.86 0.30 12.58 0.32 13.82 3.12 0.76

doduc 1.00 0.94 8.22 1.01 10.14 1.76 2.02

matrix300 0.00 0.00 14.50 0.00 0.68 0.22 0.20

tomcatv 0.00 0.00 6.10 0.00 0.24 0.02 0.01

gcc 2.30 1.32 15.50 1.81 22.46 9.48 4.85

espresso 3.61 0.58 19.85 0.68 37.37 1.77 0.31

li 2.41 1.92 14.36 1.91 31.55 3.44 1.37

eqntott 0.91 0.47 32.87 0.51 5.01 11.01 0.80

28

Exhaustive Search for Optimal 2-bit Predictor
• There are 220 possible state machines of 2-bit predictors
• Some machines are uninteresting, pruning them out reduces the

number of state machines to 5248
• For each benchmark, determine prediction accuracy for all the

predictor state machines
• Find optimal 2-bit predictor for each application

Benchmark Optimal “Counter”

spice2g6 97.2 97.0

doduc 94.3 94.3

gcc 89.1 89.1

espresso 89.1 89.1

li 87.1 86.8

eqntott 87.9 87.2

*

*

*

*

*

*

Initial state Predict NT Predict T

N

T

8

29

Number of History Bits Needed

• Branch history table size : Direct-mapped array of 2k entries
• Some programs, like gcc, have over 7000 conditional branches
• In collisions, multiple branches share the same predictor

– Constructive interference
– Destructive interference

• Marginal gains beyond 1K entries (for these programs)

Prediction Accuracy (Overall CPI Overhead)

Benchmark 3 bit 2 bit 1 bit 0 bit

spice2g6 97.0 (0.009) 97.0 (0.009) 96.2 (0.013) 76.6 (0.031)

doduc 94.2 (0.003) 94.3 (0.003) 90.2 (0.004) 69.2 (0.022)

gcc 89.7 (0.025) 89.1 (0.026) 86.0 (0.033) 50.0 (0.128)

espresso 89.5 (0.045) 89.1 (0.047) 87.2 (0.054) 58.5 (0.176)

li 88.3 (0.042) 86.8 (0.048) 82.5 (0.063) 62.4 (0.142)

eqntott 89.3 (0.028) 87.2 (0.033) 82.9 (0.046) 78.4 (0.049)

30

Branch Prediction Implementation (PPC 604)

Decode Buffer

Fetch

Dispatch Buffer

Decode

Reservation
Dispatch

Stations

Issue

Execute

Finish Completion

Branch

to I-cache

FA (fetch address)
FABranch

Predictor

Spec. target

Prediction
 FA-mux

SFX SFX CFX FPU LSBRN

 Buffer

Branch
Predictor
Update

31

BTAC and BHT Design (PPC 604)

Decode Buffer

Dispatch Buffer

Decode

Reservation
Dispatch

Stations

Issue

Execute

Finish Completion

Branch

FA

Branch Target
Address Cache

 FA
-m

ux

Branch History
Table (BHT)

BTAC

BHT

SFX SFX CFX FPU LSBRN

 Buffer

(BTAC)

I-cache

update

update

FA FA

FA
R

+4

BTAC prediction

BHT prediction

BTAC:
- 64 entries
- fully associative
- hit => predict taken

BHT:
- 512 entries
- direct mapped
- 2-bit saturating counter
 history based prediction
- overrides BTAC prediction 32

BTAC and BHT Design (PPC 604)

9

33

Register Data Flow Techniques

• Register Data Flow
– Resolving Anti-dependences (WAR)
– Resolving Output Dependences (WAW)
– Resolving True Data Dependences (RAW)

• Tomasulo’s Algorithm [Tomasulo, 1967]
– Modified IBM 360/91 Floating-point Unit
– Reservation Stations
– Common Data Bus
– Register Tags
– Operation of Dependency Mechanisms

34

The Big Picture

INSTRUCTION PROCESSING CONSTRAINTS

Resource Contention Code Dependences

Control Dependences Data Dependences

True Dependences

Anti-Dependences Output Dependences

Storage Con?icts

(Structural Dependences)

(RAW)

(WAR) (WAW)

35

Register Data Flow

Each ALU Instruction:

Need Availability of Fn (Structural Dependences)

Need Availability of Rj, Rk (True Data Dependences)

Need Availability of Ri (Anti-and output Dependences)

INSTRUCTION EXECUTION MODEL

Ri Fn (Rj, Rk)

Dest.
Reg.

Funct.
Unit

Source
Registers

R0
R1

Rm

FU1

FU2

FUn

Interconnect

•
•
•

•
•
•

Registers Functional
Units

36

Causes of (Register) Storage Conflict

REGISTER RECYCLING

MAXIMIZE USE OF REGISTERS

MULTIPLE ASSIGNMENTS OF VALUES TO REGISTERS

OUT OF ORDER ISSUING AND COMPLETION

LOSE IMPLIED PRECEDENCE OF SEQUENTIAL CODE

LOSE 1-1 CORRESPONDENCE BETWEEN VALUES AND
REGISTERS

Ri
•
•
•

Ri

••• DEF

USE

USE

DEF•••

Ri

Ri

•
•
•

•
•
•

10

37

Contribution to Register Recycling
COMPILER REGISTER ALLOCATION

INSTRUCTION LOOPS

Single Assignment, Symbolic Reg.

Map Symbolic Reg. to Physical Reg.
Maximize Reuse of Reg.

CODE GENERATION

REG. ALLOCATION

Reuse Same Set of Reg. in
Each Iteration

Overlapped Execution of
Different Iterations

For (k=1;k<= 10; k++)
 t += a [i] [k] * b [k] [j] ;9 $34: mul $14 $7, 40

10 addu $15, $4, $14
11 mul $24, $9, 4
12 addu $25, $15, $24
13 lw $11, 0($25)
14 mul $12, $9, 40
15 addu $13, $5, $12
16 mul $14, $8, 4
17 addu $15, $13, $14
18 lw $24, 0($15)
19 mul $25, $11, $24
20 addu $10, $10, $25
21 addu $9, $9, 1
22 ble $9, 10, $34

38

Resolving Anti-Dependences

STALL DISPATCHING

DELAY DISPATCHING OF (2)

REQUIRE RECHECKING AND REACCESSING

COPY OPERAND

COPY NOT-YET-USED OPERAND TO PREVENT BEING
OVERWRITTEN

MUST USE TAG IF ACTUAL OPERAND NOT-YET-AVAILABLE

RENAME REGISTER

HARDWARE ALLOCATION

(2) R3 R5 + 1

Must Prevent (2) from completing •
 •
 •
(1) R4 R3 + 1

before (1) is dispatched.

39

Resolving Output Dependences

STALL DISPATCHING/ISSUING

DENOTE OUTPUT DEPENDENCE

HOLD DISPATCHING UNTIL RESOLUTION OF DEPENDENCE

ALLOW DECODING OF SUBSEQUENT INSTRUCTIONS

RENAME REGISTER

HARDWARE ALLOCATION

Must Prevent (3) from completing
before (1) completes.

(1) R3 R3 op R5

 R3

(3) R3 R5 + 1

•
•
•

•
•
•

40

Register Renaming

Register Renaming Resolves:

 Anti-Dependences
 Output Dependences

Design of Redundant Registers:

Number:

One

Multiple

Allocation:

Fixed for Each Register

Pooled for all Regsiters

Location:

Attached to Register File
(Centralized)

Attached to functional units
(Distributed)

Architected Physical
Registers Registers

R1
R2

•
•
•

Rn

P1
P2
•
•
•
Pn

•
•
•
Pn + k

11

41

Register Renaming in the RIOS-I FPU

FPU Register Renaming

Map table
32 x 6

32 33 34 35 36 37 38 39

Free Listhead tail

head

tail
release

Pending Target Return Queue

FAD 3 2 1 FAD 3 2 1

OP T S1 S2 S3 OP T S1 S2 S3

Incoming FPU instructions pass through a renaming table prior to decode

The 32 architectural registers are remapped to 40 physical registers

Physical register names are used within the FPU

Complex control logic maintains active register mapping

Simplified FPU Register Model

42

Resolving True Data Dependences

 STALL DISPATCHING

 ADVANCE INSTRUCTIONS

 “DYNAMIC EXECUTION”

 Reservation Station + Complex Forwarding

 Out-of-order (OoO) Execution

 Try to Approach the “Data-Flow Limit”

REGISTER READ

ALU OP

REGISTER WRITE

(1) R2 R1 + 1
 •
 •
 •
(2) R3 R2
 •
 •
 •
(3) R4 R3

43

Embedded “Data Flow” Engine

Dispatch Buffer

Reservation

Dispatch

Complete

Stations

“Dynamic

Completion Buffer

Branch

Execution”

- Read register or
- Assign register tag

- Monitor reg. tag
- Receive data
 being forwarded
- Issue when all
 operands ready

- Advance instructions
 to reservation stations

44

Tomasulo’s Algorithm [Tomasulo, 1967]

Ctrl.Ctrl. Ctrl.Ctrl.

Adder

Floating Point

Registers FLR

0

2

4

8

Control

Store

Data

1

2

3

Buffers SDB

Control

Decoder

Floating

Operand

Stack

FLOS
Control

Floating Point

Buffers FLB

1

2

3

4

5

6

Decoder

Floating Point

Registers (FLR)

Control

0

2

4

8

Control

Floating

Operand

Stack

(FLOS)

Floating Point

Buffers (FLB)

1

2

3

4

5

6

Store

Data

1

2

3

Buffers (SDB)

Control

Storage Bus

Ctrl.

Adder

Instruction Unit

To Storage

Result

Sink Source

AdderMultiply/Divide

Result

Sink Source

•

•

Floating Point
Register

(FLR) Bus

Floating Point
Buffer

(FLB) Bus

• Result Bus

12

45

IBM 360/91 FPU
• Multiple functional units (FU’s)

– Floating-point add
– Floating-point multiply/divide

• Three register files (pseudo reg-reg machine in flo ating-point unit)
– (4) floating-point registers (FLR)
– (6) floating-point buffers (FLB)
– (3) store data buffers (SDB)

• Out of order instruction execution :
– After decode the instruction unit passes all floating point instructions (in

order) to the floating-point operation stack (FLOS).
– In the floating point unit, instructions are then further decoded and issued

from the FLOS to the two FU’s
• Variable operation latencies :

– Floating-point add: 2 cycles
– Floating-point multiply: 3 cycles
– Floating-point divide: 12 cycles

• Goal: achieve concurrent execution of multiple floating-p oint
instructions, in addition to achieving one instruct ion per cycle in
instruction pipeline 46

Dependence Mechanisms
Two Address IBM 360 Instruction Format:

R1 <-- R1 op R2
Major dependence mechanisms:
• Structural (FU) dependence = > virtual FU’s

– Reservation stations

• True dependence = > pseudo operands + result forwar ding
– Register tags

– Reservation stations

– Common data bus (CDB)

• Anti-dependence = > operand copying
– Reservation stations

• Output dependence = > register renaming + result
forwarding
– Register tags

– Reservation stations

– Common data bus (CDB)

47

IBM 360/91 FPU

Adder

Floating Point

Registers FLR

0

2

4

8

Store

Data

1

2

3

Buffers SDB

Control

Decoder

Floating

Operand

Stack

FLOS
Control

Floating Point

Buffers FLB

1

2

3

4

5

6

Decoder

Floating Point
Registers (FLR)

Control

0

2
4
8

Floating

Operand
 Stack

Floating Point

Buffers (FLB)

1
2
3
4
5
6

Store
Data

1
2
3

Buffers (SDB)

Control

Storage Bus Instruction Unit

Result

Multiply/Divide

•

Common Data Bus (CDB)

 Point

Busy
Bits

Adder

FLB Bus
FLR Bus

CDB ••

•

•

Tags

Tags

Sink TagTag Source Ctrl.
Sink TagTag Source Ctrl.

Sink TagTag Source Ctrl.

Sink TagTag Source Ctrl.

Sink TagTag Source Ctrl.

•

Result

(FLOS)

48

Reservation Stations

• Used to collect operands or pseudo operands (tags).
• Associate more than one set of buffering registers

(control, source, sink) with each FU, = > virtual FU’s.
• Add unit: three reservation stations
• Multiply/divide unit: two reservation stations

13

49

Common Data Bus (CDB)
• CDB is fed by all units that can alter a register

(or supply register values) and it feeds all units
which can have a register as an operand .

• Sources of CDB:
– Floating-point buffers (FLB)
– Two FU’s (add unit and the multiply/divide unit)

• Destinations of CDB:
– Reservation stations
– Floating-point registers (FLR)
– Store data buffers (SDB)

50

Register Tags

• Every source of a register value must be uniquely
identified by its own tag value.
– (6) FLB’s

– (5) reservation stations (3 with add unit, 2 with multiply/divide unit)

= = > 4-bit tag is needed to identify the 11 potential sources

• Every destination of a register value must carry a tag field .
– (5) “sink” entries of the reservation stations

– (5) “source” entries of the reservation stations

– (4) FLR’s

– (3) SDB’s

= = > a total of 17 tag fields are needed (i.e. 17 places that need
tags)

51

Operation of Dependence Mechanisms
1. Structural (FU) dependence= > virtual FU’s

– FLOS can hold and decode up to 8 instructions.

– Instructions are dispatched to the 5 reservation stations (virtual FU’s) even
though there are only two physical FU’s.

– Hence, structural dependence does not stall dispatching.

2. True dependence= > pseudo operands + result forwarding

– If an operand is available in FLR, it is copied to a res. station entry.

– If an operand is not available (i.e. there is pending write), then a tag is copied to
the reservation station entry instead. This tag identifies the source of the
pending write. This instruction then waits in its reservation station for the true
dependence to be resolved.

– When the operand is finally produced by the source (ID of source = tag value),
this source unit asserts its ID, i.e. its tag value, on the CDB followed by
broadcasting of the operand on the CDB.

– All the reservation station entries and the FLR entries andSDB entries carrying
this tag value in their tag fields will detect a match of tag values and latch in the
broadcasted operand from the CDB.

– Hence, true dependence does not block subsequent independent instructions
and does not stall a physical FU. Forwarding also minimizes delay due to true
dependence. 52

Example 1

Adder

Tag Sink Tag Source

Mult/Div

Tag Sink Tag SourceBusyTag DataID ID

2
3

1 4
5

DISPATCHED INSTRUCTION(S): ______________

6.00
2
4
8

3.5
10.0
7.8

CYCLE #1

Adder

Tag Sink Tag Source

Mult/Div

Tag Sink Tag SourceBusyTag DataID ID

2
3

1 4
5

DISPATCHED INSTRUCTION(S): ______________

6.00
2
4
8

3.5
10.0
7.8

CYCLE #2

Adder

Tag Sink Tag Source

Mult/Div

Tag Sink Tag Source BusyTag DataID ID

2
3

1 4
5

DISPATCHED INSTRUCTION(S): ______________

0
2
4
8

CYCLE #3

i: R2 <- R0 + R4

j: R8 <- R0 + R2

14

53

Operation of Dependence Mechanisms

3. Anti-dependence= > operand copying

– If an operand is available in FLR, it is copied to a reservation
station entry.

– By copying this operand to the reservation station, all anti-
dependences due to future writes to this same register are
resolved.

– Hence, the reading of an operand is not delayed, possibly due to
other dependences, and subsequent writes are also not delayed.

54

Example 2

Adder

Tag Sink Tag Source

Mult/Div

Tag Sink Tag SourceBusyTag DataID ID

2
3

1 4
5

DISPATCHED INSTRUCTION(S): ______________

6.00
2
4
8

3.5
10.0
7.8

CYCLE #1

Adder

Tag Sink Tag Source

Mult/Div

Tag Sink Tag SourceBusyTag DataID ID

2
3

1 4
5

DISPATCHED INSTRUCTION(S): ______________

6.00
2
4
8

3.5
10.0
7.8

CYCLE #2

Adder

Tag Sink Tag Source

Mult/Div

Tag Sink Tag Source BusyTag DataID ID

2
3

1 4
5

DISPATCHED INSTRUCTION(S): ______________

0
2
4
8

CYCLE #3

i: R4 <- R0 * R8

j: R0 <- R4 * R2

k: R2 <- R2 + R8

55

Operation of Dependence Mechanisms
3. Output dependence= > register renaming + result forwarding

– If a register is waiting for a pending write, its tag field will contain the ID,
or tag value, of the source for that pending write.

– When that source eventually produces the result, that result will be
written into the register via the CDB.

– It is possible that prior to the completion of the pending write, another
instruction can come along and also has that same register as its
destination register.

– If this occurs, the operands (or pseudo operands) needed by this
instruction are still copied to an available reservation station. In addition,
the tag field of the destination register of this instruction is updated with
the ID of this new reservation station, i.e. the old tag value is overwritten.
This will ensure that the said register will get the latest value, i.e. the late
completing earlier write cannot overwrite a later write.

– Hence, the output dependence is resolved without stalling a physical
functional unit, not requiring additional buffers to ensure sequential write
back to the register file.

56

Example 3

Adder

Tag Sink Tag Source

Mult/Div

Tag Sink Tag SourceBusyTag DataID ID

2
3

1 4
5

DISPATCHED INSTRUCTION(S): ______________

6.00
2
4
8

3.5
10.0
7.8

CYCLE #1

Adder

Tag Sink Tag Source

Mult/Div

Tag Sink Tag SourceBusyTag DataID ID

2
3

1 4
5

DISPATCHED INSTRUCTION(S): ______________

6.00
2
4
8

3.5
10.0
7.8

CYCLE #2

Adder

Tag Sink Tag Source

Mult/Div

Tag Sink Tag Source BusyTag DataID ID

2
3

1 4
5

DISPATCHED INSTRUCTION(S): ______________

0
2
4
8

CYCLE #3

i: R4 <- R0 * R8

j: R2 <- R0 + R4

k: R4 <- R0 + R8
l: R8 <- R4 * R8

15

57

Summary of Tomasulo’s Algorithm
• Supports out of order execution of instructions.

• Resolves dependences dynamically using hardware.

• Attempts to delay the resolution of dependencies as late as possible.

• Structural dependencedoes not stall issuing; virtual FU’s in the form
of reservation stations are used.

• Output dependencedoes not stall issuing; copying of old tag to
reservation station and updating of tag field of the register with
pending write with the new tag.

• True dependencewith a pending write operand does not stall the
reading of operands; pseudo operand (tag) is copied to reservation
station.

• Anti-dependencedoes not stall write back; earlier copying of operand
awaiting read to the reservation station.

• Can support sequence of multiple output dependences.

• Forwarding from FU’s to reservation stations bypasses the register
file.

58

Tomasulo vs. Modern OOO
IBM 360/91 Modern

Width Peak IPC = 1 4+

Structural hazards 2 FPU
Single CDB

Many FU
Many busses

Anti-dependences Operand copy Reg. Renaming

Output dependences Renamed reg. tag Reg. renaming

True dependences Tag-based forw. Tag-based forw.

Exceptions Imprecise Precise (ROB)

Implementation 3 x 66” x 15” x 78”
60ns cycle time
11-12 gate delays
per pipe stage
>$1 million

1 chip
300ps
< $100

59

Example 4

i: R4 <-- R0 + R8

j: R2 <-- R0 * R4

k: R4 <-- R4 + R8

l: R8 <-- R4 * R2

60

Example 4

(2)

(3)

(2)

(3)

(10)

(2)

(3) (2)

(3)

(8)

i

j

k

l

i

j k

l

16

61

Example 4

Adder

Tag Sink Tag Source

Mult/Div

Tag Sink Tag SourceBusyTag DataID ID

2
3

1 4
5

DISPATCHED INSTRUCTION(S): ______________

6.00
2
4
8

3.5
10.0
7.8

CYCLE #1

CYCLE #2

Adder

Tag Sink Tag Source

Mult/Div

Tag Sink Tag Source BusyTag DataID ID

2
3

1 4
5

DISPATCHED INSTRUCTION(S): ______________

0
2
4
8

CYCLE #3

Adder

Tag Sink Tag Source

Mult/Div

Tag Sink Tag Source BusyTag DataID ID

2
3

1 4
5

DISPATCHED INSTRUCTION(S): ______________

0
2
4
8

62

Example 4
CYCLE #4

CYCLE #5

Adder

Tag Sink Tag Source

Mult/Div

Tag Sink Tag Source BusyTag DataID ID

2
3

1 4
5

DISPATCHED INSTRUCTION(S): ______________

0
2
4
8

CYCLE #6

Adder

Tag Sink Tag Source

Mult/Div

Tag Sink Tag Source BusyTag DataID ID

2
3

1 4
5

DISPATCHED INSTRUCTION(S): ______________

0
2
4
8

Adder

Tag Sink Tag Source

Mult/Div

Tag Sink Tag Source BusyTag DataID ID

2
3

1 4
5

DISPATCHED INSTRUCTION(S): ______________

0
2
4
8

63

“Dataflow Engine” for Dynamic Execution
Dispatch Buffer

Reservation

Dispatch

Complete

Stations

Compl. Buffer

Branch

Reg. File Ren. Reg.

Forwarding
results to
Res. Sta. &

Allocate
Reorder
Buffer
entries

Reg. Write Back

rename

Managed as a queue;
Maintains sequential order
of all Instructions in flight
(“takeoff” = dispatching;
 “landing” = completion)

(Reorder Buff.)

Integer Integer Float.- Load/
Point Store

registers

64

Instruction Processing Steps
•DISPATCH:

•Read operands from Register File (RF) and/or Rename Buffers (RRB)

•Rename destination register and allocate RRB entry

•Allocate Reorder Buffer (ROB) entry

•Advance instruction to appropriate Reservation Station (RS)

•EXECUTE:

•RS entry monitors bus for register Tag(s) to latch in pending operand(s)

•When all operands ready, issue instruction into Functional Unit (FU) and
deallocate RS entry (no further stalling in execution pipe)

•When execution finishes, broadcast result to waiting RS entries, RRB entry,
and ROB entry

•COMPLETE:

•Update architected register from RRB entry, deallocate RRB entry, and if it
is a store instruction, advance it to Store Buffer

•Deallocate ROB entry and instruction is considered architecturally
completed

17

65

Reservation Station Implementation

• Reservation Stations: distributed vs. centralized
– Wakeup: benefit to partition across data types
– Select: much easier with partitioned scheme

• Select 1 of n/4 vs. 4 of n

Reorder Buffer

Reservation
Stations

or
Issue Queue

In Order In Order

Out of
Order

Out of
Order

66

Reorder Buffer Implementation

• Merge RS and ROB => Register Update Unit (RUU)
– Inefficient, hard to scale

Reorder Buffer
Register
Update

Unit
In Order In Order

Out of
Order

Out of
Order

67

Reorder Buffer Implementation

• Reorder Buffer

– “Bookkeeping”

– Can be instruction-grained, or block-grained (4-5 ops)
68

Data Capture Reservation Station

• Reservation Stations
– Data capture vs. no data capture

– Latter leads to “speculative scheduling”

18

69

Register File Alternatives

• Rename register organization
– Future file (future updates buffered, later committed)

• Rename register file

– History file (old versions buffered, later discarded)
– Merged (single physical register file)

Register
Lifetime

Status
Duration

(cycles)

Result stored where?

Future File History
File

Phys. RF

Dispatch Unavail ≥ 1 N/A N/A N/A

Finish
execution

Speculative ≥ 0 FF ARF PRF

Commit Committed ≥ 0 ARF ARF PRF

Next def.
Dispatched

Committed ≥ 1 ARF HF PRF

Next def.
Committed

Discarded ≥ 0 Overwritten Discarded Reclaimed

70

Register File Commit

• Register Commit

– History file (only proposed)

• Copy previous value from ARF to HF at dispatch

• Use HF to reconstruct precise state if needed

– Future file: separate ARF & RRF (lecture notes,
PPC 604/620, Pentium Pro)

• Copy committed value from RRF to ARF

• Update rename table mapping

– Physical Register File: merged ARF & RRF (MIPS
R10000 paper, Pentium 4, Alpha 21264, Power 4)

• No copy; simpler datapath (operand always in PRF)

• Simply “commit” rename table mapping as branches resolve

71

Rename Table Implementation

• MAP checkpointing
– Recovery from branches, exceptions
– Checkpoint granularity

• Every instruction
• Every branch, playback to get to exception

boundary

• RAM Map
– Just a lookup table; checkpoints nxm each

• CAM Map
– Positional bit vectors; checkpoints a single

column

72

Summary

• Register dependences
– True dependences
– Antidependences
– Output dependences

• Register Renaming
• Tomasulo’s Algorithm
• Reservation Station Implementation
• Reorder Buffer Implementation
• Register File Implementation

– History file
– Future file
– Physical register file

• Rename Table Implementation

19

73

Memory Data Flow

• Memory Data Flow
– Memory Data Dependences

– Load Bypassing

– Load Forwarding

– Speculative Disambiguation

– The Memory Bottleneck

• Basic Memory Hierarchy Review

74

Memory Data Dependences

• Besides branches, long memory latencies are one of the biggest
performance challenges today.

• To preserve sequential (in-order) state in the data caches and
external memory (so that recovery from exceptions is possible)
stores are performed in order. This takes care of antidependences
and output dependences to memory locations.

• However, loads can be issued out of orderwith respect to stores if
the out-of-order loads check for data dependences with respect to
previous, pending stores.

WAW WAR RAW
store X load X store X

: : :

store X store X load X

75

Memory Data Dependences

• “ Memory Aliasing” = Two memory references involving the same
memory location (collision of two memory addresses).

• “ Memory Disambiguation” = Determining whether two memory
references will alias or not (whether there is a dependence or not).

• Memory Dependency Detection:

– Must compute effective addresses of both memory references

– Effective addresses can depend on run-time data and other instructions

– Comparison of addresses require much wider comparators

Example code:

(1) STORE V

(2) ADD

(3) LOAD W

(4) LOAD X

(5) LOAD V

(6) ADD

(7) STORE W

76

Total Order of Loads and Stores

• Keep all loads and stores totally in order with respect to each
other.

• However, loads and stores can execute out of order with respect to
other types of instructions.

• Consequently, stores are held for all previous instructions, and
loads are held for stores.

– I.e. stores performed at commit point

– Sufficient to prevent wrong branch path stores since all prior
branches now resolved

20

77

Illustration of Total Order

Load vLoad xLoad wStore v data

Load x

Load x

Load x

Load x

Load x

Load x

Load x

Load x

Load x

Load x

Address
Unit

Store v

Load x

Load x

Load x

Load x

Load x

Load x

Load x

Load x

Load x

Load x

Load w
Store v

Load x

data
Load x

Load x

Load x

Load x

Load x

Load x

Load x

Load x

Load x

Load x

Load w
Store v

Load x
Load v
Store wLoad/Store

Reservation

Station data

data

Load x

Load x

Load x

Load x

Load x

Load x

Load x

Load x

Load x

Load x

data

data

Load x

Load x

Load x

Load x

Load x

Load x

Load x

Load x

Load x

Load x

Load x
Load w

Load v
Store w data

Load x

Load x

Load x

Load x

Load x

Load x

Load x

Load x

Load x

Load x

Load x
Load v
Store w data

Load x

Load x

Load x

Load x

Load x

Load x

Load x

Load x

Load x

Load x

Load v
Storew data

Store w data

cache
addr

cache
write
data

Store v
released

Cycle 1 Cycle 2 Cycle 3 Cycle 4

Cycle 5 Cycle 6 Cycle7 Cycle 8

Load v
Add
Add

Load w
Store w

Load x Cycle 1
Cycle 2

Decoder

ISSUING LOADS AND STORES WITH TOTAL ORDERING

Address
Unit

Address
Unit

Load w
Store v

Load x
Load v
Store w

Address
Unit

Address
Unit

Address
Unit

Address
Unit

Address
Unit

78

Load Bypassing

• Loads can be allowed to bypass stores (if no aliasing).

• Two separate reservation stations and address
generation units are employed for loads and stores.

• Store addresses still need to be computed before loads
can be issued to allow checking for load dependences. If
dependence cannot be checked, e.g. store address
cannot be determined, then all subsequent loads are
held until address is valid (conservative).

• Stores are kept in ROB until all previous instructions
complete; and kept in the store buffer until gaining
access to cache port.

– Store buffer is “future file” for memory

– How would you build “history file” for memory?

79

Illustration of Load Bypassing

Store v
released

Load x

Load x

Load x
Load x
Load x

Load x

Load x

Load x
Load x
Load x

Store v

Store
Reservation

Station

cache addr
cache

write data

Cycle 1

Load v
Add
Add

Load w
Store w

Load x Cycle 1
Cycle 2

Decoder

Load
Reser-
vation
Station

Address
Unit

Store
Buffer

Load x

Load x

Load x

Load x

Load x

Load x

Load x

Load x

Load x

Load x

Cycle 2

dataStore vLoad w
Load x Load x

Load x

Load x

Load x

Load x

Load x

Load x

Load x

Load x

Load x

Cycle 3

dataStore wLoad x
Load v

dataStore v

Load w

Cycle 4

Load v

Load x

dataStore w
dataStore v

Cycle 5

Load v

dataStore w

Load x

Load x

Load x

Load x

Load x

Load x

Load x

Load x

Load x

Load x

Cycle 6

dataStore w

Load v

LOAD BYPASSING OF STORES

Store v
released

Address
Unit

Address
Unit

Address
Unit

Address
Unit

Address
Unit

Address
Unit

Address
Unit

Address
Unit

Address
Unit

Address
Unit

Address
Unit

Store v data

Load x

Load x

Load x
Load x
Load x

Load x

Load x

Load x
Load x
Load x

80

Load Forwarding

• If a subsequent load has a dependence on a store
still in the store buffer, it need not wait till the
store is issued to the data cache.

• The load can be directly satisfied from the store
buffer if the address is valid and the data is
available in the store buffer.

• This avoids the latency of accessing the data cache.

21

81

Illustration of Load Forwarding

Store v
released

Load x

Load x

Load x

Load x

Load x

Load x

Load x

Load x

Load x

Load x

Store v

Store

Reservation

Station

cache addr
cache

write data

Cycle 1

Load v
Add
Add

Load w
Store w

Load x Cycle 1
Cycle 2

Decoder

Load

Reser-
vation
Station

Address
Unit

Store
Buffer

Load x

Load x

Load x

Load x

Load x

Load x

Load x

Load x

Load x

Load x

Cycle 2

dataStore vLoad w
Load x Load x

Load x

Load x

Load x

Load x

Load x

Load x

Load x

Load x

Load x

Cycle 3

dataStore wLoad x
Load v

dataStore v

Load w

Load x

Load x

Load x

Load x

Load x

Load x

Load x

Load x

Load x

Load x

Cycle 4

Load v

Load x

dataStore w
dataStore v

Load x

Load x

Load x

Load x

Load x

Load x

Load x

Load x

Load x

Load x

Cycle 5

Load v

dataStore w

Load x

Load x

Load x

Load x

Load x

Load x

Load x

Load x

Load x

Load x

Cycle 6

dataStore w

Store v

LOAD BYPASSING OF STORES WITH FORWARDING

Store v
released

Address
Unit

Address
Unit

Address
Unit

Address
Unit

Address
Unit

Address
Unit

Address
Unit

Address
Unit

Address
Unit

Address
Unit

Address
Unit

Store v
released

Forward
data

dataStore v

Load v data
82

The DAXPY Example
Y(i) = A * X(i) + Y(i)

LD F0, a

ADDI R4, Rx, #512 ; last address

Loop:

LD F2, 0(Rx) ; load X(i)

MULTD F2, F0, F2 ; A*X(i)

LD F4, 0(Ry) ; load Y(i)

ADDD F4, F2, F4 ; A*X(i) + Y(i)

SD F4, 0(Ry) ; store into Y(i)

ADDI Rx, Rx, #8 ; inc. index to X

ADDI Ry, Ry, #8 ; inc. index to Y

SUB R20, R4, Rx ; compute bound

BNZ R20, loop ; check if done

LD

LDMULTD

ADDD

SD

83

Performance Gains From Weak Ordering

 Load Bypassing: Load Forward ing:

 Performance gain:

Load bypassing: 11%-19% increase over total ordering

Load forwarding: 1%-4% increase over load bypassing

CODE:

ST X
 :
 :
LD Y

CODE:

ST X
 :
 :
LD X

Reservation
Station

Completion
Buffer

Store
Buffer

Load/Store
Unit

ST X

LD Y

ST X

LD X

84

Optimizing Load/Store Disambiguation

• Non-speculative load/store disambiguation
1. Loads wait for addresses of all prior stores
2. Full address comparison
3. Bypass if no match, forward if match

• (1) can limit performance:

load r5,MEM[r3] ← cache miss
store r7, MEM[r5] ← RAW for agen, stalled
…
load r8, MEM[r9] ← independent load stalled

22

85

Speculative Disambiguation

• What if aliases are rare?
1. Loads don’t wait for addresses

of all prior stores
2. Full address comparison of

stores that are ready
3. Bypass if no match, forward if

match
4. Check all store addresses

when they commit
– No matching loads –

speculation was correct

– Matching unbypassed load –
incorrect speculation

5. Replay starting from incorrect
load

Load
Queue

Store
Queue

Load/Store RS

Agen

Reorder Buffer

Mem

86

Use of Prediction

• If aliases are rare: static prediction
– Predict no alias every time

• Why even implement forwarding? PowerPC 620 doesn’t

– Pay misprediction penalty rarely
• If aliases are more frequent: dynamic prediction

– Use PHT-like history table for loads
• If alias predicted: delay load
• If aliased pair predicted: forward from store to load

– More difficult to predict pair [store sets, Alpha 21264]

– Pay misprediction penalty rarely
• Memory cloaking [Moshovos, Sohi]

– Predict load/store pair
– Directly copy store data register to load target register
– Reduce data transfer latency to absolute minimum

87

Load/Store Disambiguation Discussion

• RISC ISA:
– Many registers, most variables allocated to registers
– Aliases are rare
– Most important to not delay loads (bypass)
– Alias predictor may/may not be necessary

• CISC ISA:
– Few registers, many operands from memory
– Aliases much more common, forwarding necessary
– Incorrect load speculation should be avoided
– If load speculation allowed, predictor probably necessary

• Address translation:
– Can’t use virtual address (must use physical)
– Wait till after TLB lookup is done
– Or, use subset of untranslated bits (page offset)

• Safe for proving inequality (bypassing OK)
• Not sufficient for showing equality (forwarding not OK) 88

The Memory Bottleneck
Dispatch Buffer

Dispatch

RS’s

Branch

Reg. File Ren. Reg.

Reg. Write Back

Reorder Buff.

Integer Integer Float.-

Point

Load/

Store

Eff. Addr. Gen.

Addr. Translation

D-cache Access

Data Cache

Complete

Retire

Store Buff.

23

89

Load/Store Processing
For both Loads and Stores:

1. Effective Address Generation:
Must wait on register value

Must perform address calculation

2. Address Translation:
Must access TLB

Can potentially induce a page fault (exception)

For Loads: D-cache Access (Read)
Can potentially induce a D-cache miss

Check aliasing against store buffer for possible load forwarding

If bypassing store, must be flagged as “speculative” load until completion

For Stores:D-cache Access (Write)
When completing must check aliasing against “speculative” loads

After completion, wait in store buffer for access to D-cache

Can potentially induce a D-cache miss

90

Easing The Memory Bottleneck
Dispatch Buffer

Dispatch

RS’s

Branch

Reg. File Ren. Reg.

Reg. Write Back

Reorder Buff.

Integer Integer Float.-

Point

Load/

Store

Data Cache

Complete

Retire

Store Buff.

Load/

Store

Missed
 loads

91

Memory Bottleneck Techniques
Dynamic Hardware(Microarchitecture):

Use Non-blocking D-cache (need missed-load buffers)

Use Multiple Load/Store Units (need multiported D-cache)

Use More Advanced Caches (victim cache, stream buffer)

Use Hardware Prefetching (need load history and stride detection)

Static Software(Code Transformation):

Insert Prefetch or Cache-Touch Instructions (mask miss penalty)

Array Blocking Based on Cache Organization (minimize misses)

Reduce Unnecessary Load/Store Instructions (redundant loads)

Software Controlled Memory Hierarchy (expose it to above DSI)

92

Advanced Memory Hierarchy

• Better miss rate: victim caches

• Reducing miss costs through software restructuring

• Higher bandwidth: Lock-up free caches, superscalar caches

• Beyond simple blocks

• Two level caches

• Prefetching, software prefetching

• Main Memory, DRAM

• Virtual Memory, TLBs

• Interaction of caches, virtual memory

24

93

Jouppi’s Victim Cache

• Targeted at conflict misses

• Victim cache: a small fully associative cache

– holds victims replaced in direct-mapped or low-assoc

– LRU replacement

– a miss in cache + a hit in victim cache

• => move line to main cache

• Poor man’s associativity

– Not all sets suffer conflicts; provide limited capacity for conflicts

Address

Hash0

94

Jouppi’s Victim Cache

• Removes conflict misses, mostly useful for DM or 2-way

– Even one entry helps some benchmarks

– I-cache helped more than D-cache

• Versus cache size

– Generally, victim cache helps more for smaller caches

• Versus line size

– helps more with larger line size (why?)

• Used in Pentium Pro (P6) I-cache

Address

Hash0

95

Software Restructuring

• If column-major (Fortran)

– x[i+1, j] follows x [i,j] in memory

– x[i,j+1] long after x[i,j] in memory

• Poor code

for i = 1, rows

for j = 1, columns

sum = sum + x[i,j]

• Conversely, if row-major (C/C++)

• Poor code

for j = 1, columns

for i = 1, rows

sum = sum + x[i,j]

C
on

tig
uo

us
 a

dd
re

ss
es

Contiguous addresses

96

Software Restructuring

• Better column-major code

for j = 1, columns

for i = 1, rows

sum = sum + x[i,j]

• Optimizations - need to check if it
is valid to do them

– Loop interchange (used above)

– Merging arrays

– Loop fusion

– Blocking

C
on

tig
uo

us
 a

dd
re

ss
es

25

97

Superscalar Caches

• Increasing issue width => wider caches

• Parallel cache accesses are harder than parallel
functional units

• Fundamental difference:

– Caches have state, functional units don’t

– Operation thru one port affects future operations thru others

• Several approaches used

– True multi-porting

– Multiple cache copies

– Virtual multi-porting

– Multi-banking (interleaving)

98

True Multiporting of SRAM

“Word” Lines
-select a row

“Bit” Lines
-carry data in/out

99

True Multiporting of SRAM

• Would be ideal

• Increases cache area

– Array becomes wire-dominated

• Slower access

– Wire delay across larger area

– Cross-coupling capacitance between wires

• SRAM access difficult to pipeline

100

Multiple Cache Copies

• Used in DEC Alpha 21164, IBM Power4

• Independent load paths

• Single shared store path

– May be exclusive with loads, or internally dual-ported

• Bottleneck, not practically scalable beyond 2 paths

• Provides some fault-tolerance

– Parity protection per copy

– Parity error: restore from known-good copy

– Avoids more complex ECC (no RMW for subword writes), still provides SEC

Load Port 0

Load Port 1

Store Port

26

101

Virtual Multiporting

• Used in IBM Power2 and DEC 21264

– 21264 wave pipelining - pipeline wires WITHOUT latches

• Time-share a single port

• Requires very careful array design to guarantee balanced paths

– Second access cannot catch up with first access

• Probably not scalable beyond 2 ports

• Complicates and reduces benefit of speed binning

Port 0

Port 1

102

Multi-banking or Interleaving

• Used in Intel Pentium (8 banks)

• Need routing network

• Must deal with bank conflicts

– Bank conflicts not known till address generated

– Difficult in non-data-capture machine with speculative scheduling

• Replay – looks just like a cache miss

– Sensitive to bank interleave: fine-grained vs. coarse-grained

• Spatial locality: many temporally local references to same block

– Combine these with a “row buffer” approach?

Port 0

Port 1

Bank 0

C
rossbar C

ro
ss

ba
r

Port 0

Port 1

Bank 1

Bank 2

Bank 3

Bank 4

Bank 5

Bank 6

Bank 7

103

Combined Schemes

• Multiple banks with multiple ports

• Virtual multiporting of multiple banks

• Multiple ports and virtual multiporting

• Multiple banks with multiply virtually multiported
ports

• Complexity!

• No good solution known at this time

– Current generation superscalars get by with 1-3 ports

• Course project?

104

Beyond Simple Blocks

• Break blocks into

– Address block associated with tag

– Transfer block to/from memory (subline, sub-block)

• Large address blocks

– Decrease tag overhead

– But allow fewer blocks to reside in cache (fixed mapping)

Tag Subline 0 Subline 1 Subline 2 Subline 3

Subline Valid Bits

Tag Subline 0 Subline 1 Subline 2 Subline 3

Tag Subline 0 Subline 1 Subline 2 Subline 3

Tag Subline 0 Subline 1 Subline 2 Subline 3

27

105

Beyond Simple Blocks

• Larger transfer block

– Exploit spatial locality

– Amortize memory latency

– But take longer to load

– Replace more data already cached (more conflicts)

– Cause unnecessary traffic

• Typically used in large L2/L3 caches to limit tag overhead

• Sublines tracked by MSHR during pending fill

Tag Subline 0 Subline 1 Subline 2 Subline 3

Subline Valid Bits

Tag Subline 0 Subline 1 Subline 2 Subline 3

Tag Subline 0 Subline 1 Subline 2 Subline 3

Tag Subline 0 Subline 1 Subline 2 Subline 3

106

Latency vs. Bandwidth

• Latency can be handled by

– Hiding (or tolerating) it - out of order issue, nonblocking
cache

– Reducing it – better caches

• Parallelism helps to hide latency

– MLP – multiple outstanding cache misses overlapped

• But increases bandwidth demand

• Latency ultimately limited by physics

107

Latency vs. Bandwidth

• Bandwidth can be handled by “spending” more (hardware cost)

– Wider buses, interfaces

– Banking/interleaving, multiporting

• Ignoring cost, a well-designed system should never be bandwidth-limited

– Can’t ignore cost!

• Bandwidth improvement usually increases latency

– No free lunch

• Hierarchies decrease bandwidth demand to lower levels

– Serve as traffic filters: a hit in L1 is filtered from L2

• Parallelism puts more demand on bandwidth

• If average b/w demand is not met => infinite queues

– Bursts are smoothed by queues

• If burst is much larger than average => long queue

– Eventually increases delay to unacceptable levels
108

Prefetching
• Even “demand fetching” prefetches other words in block

– Spatial locality

• Prefetching is useless

– Unless a prefetch costs less than demand miss

• Ideally, prefetches should

– Always get data before it is referenced

– Never get data not used

– Never prematurely replace data

– Never interfere with other cache activity

28

109

Software Prefetching

• Use compiler to try to

– Prefetch early

– Prefetch accurately

• Prefetch into

– Register (binding)

• Use normal loads? ROB fills up, fetch stalls

• What about page faults? Exceptions?

– Caches (non-binding) – preferred

• Needs ISA support

110

Software Prefetching

• For example:

do j= 1, cols

do ii = 1 to rows by BLOCK

prefetch (&(x[i,j])+BLOCK) # prefetch one block ahead

do i = ii to ii + BLOCK-1

sum = sum + x[i,j]

• How many blocks ahead should we prefetch?

– Affects timeliness of prefetches

– Must be scaled based on miss latency

111

Hardware Prefetching

• What to prefetch

– One block spatially ahead

– N blocks spatially ahead

– Based on observed stride

• When to prefetch

– On every reference

• Hard to find if block to be prefetched already in the cache

– On every miss

• Better than doubling block size

– Tagged

• Prefetch when prefetched item is referenced

112

Prefetching for Pointer-based Data
Structures

• What to prefetch

– Next level of tree: n+1, n+2, n+?

• Entire tree? Or just one path

– Next node in linked list: n+1, n+2, n+?

– Jump-pointer prefetching

– Markov prefetching

• How to prefetch

– Software places jump pointers in data structure

– Hardware scans blocks for pointers

• Content-driven data prefetching

0xafde 0xfde0

0xde04

29

113

Stream or Prefetch Buffers

• Prefetching causes capacity and conflict misses (pollution)

– Can displace useful blocks

• Aimed at compulsory and capacity misses

• Prefetch into buffers, NOT into cache

– On miss start filling stream buffer with successive lines

– Check both cache and stream buffer

• Hit in stream buffer => move line into cache (promote)

• Miss in both => clear and refill stream buffer

• Performance

– Very effective for I-caches, less for D-caches

– Multiple buffers to capture multiple streams (better for D-caches)

• Can use with any prefetching scheme to avoid pollution

114

Multilevel Caches

• Ubiquitous in high-performance processors

– Gap between L1 (core frequency) and main memory too high

– Level 2 usually on chip, level 3 on or off-chip, level 4 off chip

• Inclusion in multilevel caches

– Multi-level inclusion holds if L2 cache is superset of L1

– Can handle virtual address synonyms

– Filter coherence traffic: if L2 misses, L1 needn’t see snoop

– Makes L1 writes simpler

• For both write-through and write-back

115

Multilevel Inclusion

• Example: local LRU not sufficient to guarantee
inclusion

– Assume L1 holds two and L2 holds three blocks

– Both use local LRU

• Final state: L1 contains 1, L2 does not

– Inclusion not maintained

• Different block sizes also complicate inclusion

P
1
4

2
3
4

1,2,1,3,1,4 1,2,3,4

116

Multilevel Inclusion

• Inclusion takes effort to maintain

– Make L2 cache have bits or pointers giving L1 contents

– Invalidate from L1 before replacing from L2

– In example, removing 1 from L2 also removes it from L1

• Number of pointers per L2 block

– L2 blocksize/L1 blocksize

• Reading list: [Wang, Baer, Levy ISCA 1989]

P
1
4

2
3
4

1,2,1,3,1,4 1,2,3,4

30

117

Multilevel Miss Rates

• Miss rates of lower level caches

– Affected by upper level filtering effect

– LRU becomes LRM, since “use” is “miss”

– Can affect miss rates, though usually not important

• Miss rates reported as:

– Miss per instruction

– Global miss rate

– Local miss rate

– “Solo” miss rate

• L2 cache sees all references (unfiltered by L1)

