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Performance (vs. VAX-11/780)

Uniprocessor Performance (SPECint)
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* VAX : 25%/year 1978 to 1986
© RISC + x86: 52%/year 1986 to 2002
* RISC + x86: ??%/year 2002 to present

The Trend Toward Multiprocessing

“We are dedicating all of our future product development to multicore designs. ..

This is a sea change in computing”

Paul Otellini, President, Intel (2005)

Manufacturer/Year AMD/’ 05 Intel/” 06 IBM/’ 04 Sun/’ 05
Processors/chip 2 2 2 8
Threads/Processor 1 2 2 4
Threads/chip 2 4 4 32

Other Factors = Multiprocessors

Growth in data-intensive applications

— Data bases, file servers, ...

Growing interest in servers, server perf.
Increasing desktop perf. less important
— Outside of graphics

Improved understanding in how to use
multiprocessors effectively

— Especially server where significant natural TLP
Advantage of leveraging design investment by
replication

— Rather than unique design
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M.J. Flynn, "Very High-Speed Computers",
Proc. of the IEEE, V/ 54, 1900-1909, Dec. 1966.

Flynn’ s Taxonomy

¢ Flynn classified by data and control streams in 1966

Single Instruction Single
Data (SISD)

(Uniprocessor)

Single Instruction Multiple
Data SIMD

(single PC: Vector, CM-2)

Multiple Instruction Single Multiple Instruction Multiple
Data (MISD) Data MIMD

(??2?27?) (Clusters, SMP servers)

¢ SIMD = Data Level Parallelism (Vector processing)
* MIMD = Thread Level Parallelism
* MIMD popular because

— Flexible: N pgms and 1 multithreaded pgm
— Cost-effective: same MPU in desktop & MIMD

Back to Basics

“A parallel computer is a collection of
processing elements that cooperate and
communicate to solve large problems fast.”

Parallel Architecture = Computer Architecture +
Communication Architecture

Two Types of multiprocessors:
1. Centralized Memory Multiprocessor
* < few dozen processor chips (and < 100 cores) in 2006
* Small enough to share single, centralized memory
2. Physically Distributed-Memory multiprocessor
e Larger number chips and cores than 1.
* BW demands = Memory distributed among processors

Centralized vs. Distributed Memory

Scale

Mem ¢ e

‘ Interconnection network ‘

Interconnection network
]

Centralized Memory

Distributed Memory

Centralized Memory Multiprocessor

e Also called symmetric multiprocessors (SMPs) because
single main memory has a symmetric relationship to all
processors

Large caches = single memory can satisfy memory
demands of small number of processors

Can scale to a few dozen processors by using a switch
and by using many memory banks

Although scaling beyond that is technically
conceivable, it becomes less attractive as the number
of processors sharing centralized memory increases
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Distributed Memory Multiprocessor

¢ Also called Non-uniform Memory Access time
(NUMA) Multiprocessor

Pro: Cost-effective way to scale memory
bandwidth

¢ |f most accesses are to local memory

¢ Pro: Reduces latency of local memory accesses

e Con: Communicating data between processors
more complex

Con: Must change software to take advantage
of increased memory BW

Models for Communication and
Memory Architecture
1. Communication occurs by explicitly passing

messages among the processors:
message-passing multiprocessors

2. Communication occurs through a shared
address space (via loads and stores):
shared memory multiprocessors either

¢ UMA (Uniform Memory Access time) for shared address,
centralized memory MP

¢ NUMA (Non Uniform Memory Access time
multiprocessor) for shared address, distributed memory
MP

Challenges of Parallel Processing

First challenge: How much of the program
inherently sequential (non-parallelizable)?

To achieve an 80X speedup from 100 processors,
what fraction of original program can be sequential?

a.10%
b.5%
c. 1%
d.<1%

Amdahl’ s Law Answers
1

Speedup,eq = Fraction

parallel

(1_ Fractionenhanced ) t eneedun
SpeEdupparallel

1
80= ] Fraction .
(1_ Fractlonparauel)+ Top
A FraCtiOn parallel
80x ((1— Fraction parallel)+ T) =1

79 =80 x Fraction
Fraction

—0.8xFraction

parallel

=79/79.2=99.75%

parallel

parallel
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Challenges of Parallel Processing

* Second challenge: long latency to remote memory

e Suppose 32 CPU MP, 2GHz, 200 ns remote
memory, all local accesses hit memory hierarchy
and base CPl is 0.6. (Remote access = 200/0.5 =
400 clock cycles.)

e What is performance impact if 0.2% instructions
involve remote access?

a. 1.5X
b. 2.0X
c. 2.5X

CPI Equation

¢ CPI=Base CPI +
Remote request rate x Remote request cost
e CPI=0.6+0.2%x400=0.6+0.8=1.4
¢ Overall Performance slowdown due to 0.2% remote
memory accesses:
1.4/0.6 =2.33

Challenges of Parallel Processing

. Application parallelism = primarily via new
algorithms that have better parallel performance

. Long remote latency impact = both by architect
and by the programmer
For example, reduce frequency of remote accesses
either by
— Caching shared data (HW)
— Restructuring the data layout to make more accesses local

(sw)

Today’ s lecture on HW to help latency via caches

Symmetric Shared-Memory Architectures

* From multiple boards on a shared bus to multiple
processors inside a single chip
* Caches both:
— Private data are used by a single processor
— Shared data are used by multiple processors
¢ Caching shared data
= reduces latency to shared data, memory
bandwidth for shared data, and interconnect
bandwidth
= cache coherence problem
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Example Cache Coherence Problem

/@ 1/0 devices

@ us— |

Memory

— Processors see different values for u after event 3
— With write back caches, value written back to memory depends on
order in which cache flushes occur
* Processes accessing main memory may see very stale value
— Unacceptable for programming, and its frequent!

Example
Py P2
/*Assume initial value of A and flag is 0*/
A=1; while (flag == 0); /*spinidly*/
flag = 1; print A;

¢ Intuition not guaranteed by coherence

¢ expect memory to respect order between accesses to different
locations issued by a given process
— to preserve orders among accesses to same location by different processes

¢ Coherence is not enough!

— pertains only to single location !

Picture

Intuitive Memory Model

e Reading an address should
return the last value
written to that address

— Easy in uniprocessors, except
for I/O

DisK”

Too vague and simplistic; 2 issues:

1. Coherence defines values returned by a read

2. Consistency determines when a written value will be returned by
aread

Coherence defines behavior to same location, Consistency

defines behavior to other locations

Defining Coherent Memory System

1. Preserve Program Order: A read by processor P to location X
that follows a write by P to X, with no writes of X by another
processor occurring between the write and the read by P,
always returns the value written by P

2. Coherent view of memory: Read by a processor to location X
that follows a write by another processor to X returns the
written value if the read and write are sufficiently separated
in time and no other writes to X occur between the two
accesses

3. Write serialization: Two writes to same location by any two
processors are seen in the same order by all processors
— If not, a processor could keep value 1 since saw as last write

— For example, if the values 1 and then 2 are written to a location, processors
can never read the value of the location as 2 and then later read it as 1
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Write Consistency

* For now assume:

1. A write does not complete (and allow the next write to
occur) until all processors have seen the effect of that
write

2. The processor does not change the order of any write
with respect to any other memory access

= if a processor writes location A followed by location B,
any processor that sees the new value of B must also
see the new value of A
¢ These restrictions allow the processor to
reorder reads, but forces the processor to
finish writes in program order

Basic Schemes for Enforcing Coherence

* Program on multiple processors will normally have
copies of the same data in several caches
— Unlike 1/0, where its rare
* Rather than trying to avoid sharing in SW,
SMPs use a HW protocol to maintain coherent caches
* Migration and Replication key to performance of shared
data
— Migration - data can be moved to a local cache and used
there in a transparent fashion
* Reduces both latency to access shared data that is allocated
remotely and bandwidth demand on the shared memory
— Replication — for shared data being simultaneously read,
since caches make a copy of data in local cache
* Reduces both latency of access and contention for read shared data

Cache Coherence Protocols

1. Directory based — Sharing status of a block of
physical memory is kept in just one location, the
directory

2. Snooping — Every cache with a copy of data also
has a copy of sharing status of block, but no
centralized state is kept
o All caches are accessible via some broadcast medium (a

bus or switch)

e All cache controllers monitor or snoop on the medium to
determine whether or not they have a copy of a block that
is requested on a bus or switch access

Snoopy Cache-Coherence Protocols

e Q ®
Address Bus snoop
I
['4

—

c

Mem 10 devices A

« Cache Controller “snoops” all transactions on the shared
medium (bus or switch)
— relevant transaction if for a block it contains
— take action to ensure coherence
« invalidate, update, or supply value
— depends on state of the block and the protocol
« Either get exclusive access before write via write invalidate or
update all copies on write
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Example: Write-thru Invalidate

/@ 1/0 devices

¢ Must invalidate before step 3

¢ Write update uses more broadcast medium BW
= all recent MPUs use write invalidate

Architectural Building Blocks

¢ Cache block state transition diagram
— FSM specifying how disposition of block changes
* invalid, valid, dirty
¢ Broadcast Medium Transactions (e.g., bus)
— Fundamental system design abstraction
— Logically single set of wires connect several devices
— Protocol: arbitration, command/addr, data
= Every device observes every transaction
¢ Broadcast medium enforces serialization of read or
write accesses = Write serialization
— 1t processor to get medium invalidates others copies
— Implies cannot complete write until it obtains bus
— All coherence schemes require serializing accesses to
same cache block

¢ Also need to find up-to-date copy of cache block

Locate up-to-date copy of data

Write-through: get up-to-date copy from memory
— Write through simpler if enough memory BW
Write-back is harder

— Most recent copy can be in a cache

Can use same snooping mechanism

1. Snoop every address placed on the bus

2. If a processor has dirty copy of requested cache block, it provides it
in response to a read request and aborts the memory access

— Complexity from retrieving cache block from a processor cache, which can take
longer than retrieving it from memory

Write-back needs lower memory bandwidth
= Support larger numbers of faster processors
= Most multiprocessors use write-back

Cache Resources for WB Snooping

Normal cache tags can be used for snooping
Valid bit per block makes invalidation easy
Read misses easy since rely on snooping

Writes = Need to know if know whether any other
copies of the block are cached

— No other copies = No need to place write on bus for WB
— Other copies = Need to place invalidate on bus
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Cache Resources for WB Snooping

e To track whether a cache block is shared, add extra
state bit associated with each cache block, like valid
bit and dirty bit
— Write to Shared block = Need to place invalidate on bus

and mark cache block as private (if an option)
— No further invalidations will be sent for that block
— This processor called owner of cache block

— Owner then changes state from shared to unshared (or
exclusive)

Cache behavior in response to bus

* Every bus transaction must check the cache-address
tags
— could potentially interfere with processor cache accesses
¢ A way to reduce interference is to duplicate tags
— One set for caches access, one set for bus accesses
* Another way to reduce interference is to use L2 tags
— Since L2 less heavily used than L1
= Every entry in L1 cache must be present in the L2 cache,
called the inclusion property
— If Snoop gets a hit in L2 cache, then it must arbitrate for

the L1 cache to update the state and possibly retrieve the
data, which usually requires a stall of the processor

Example Protocol

¢ Snooping coherence protocol is usually implemented
by incorporating a finite-state controller in each node

¢ Logically, think of a separate controller associated with
each cache block
— That is, snooping operations or cache requests for different
blocks can proceed independently
* Inimplementations, a single controller allows multiple
operations to distinct blocks to proceed in interleaved
fashion
— that is, one operation may be initiated before another is

completed, even through only one cache access or one bus
access is allowed at time

Write-through Invalidate Protocol

* Two states per block in each cache

— asin uniprocessor ( PrRd/ --

— state of a block is a p-vector of states Priwr / Buswr

— Hardware state bits associated with | BusWr /-

blocks that are in the cache |

— other blocks can be seen as beingin  prrd/ BusR&,_
invalid (not-present) state in that cache

s . >
e Writes invalidate all other cache &J PrWr / BusWr
copies
— can have multiple simultaneous readers of
e Toz G e Tz G
block,but write invalidates them | ]g T ‘ | ]g T ‘
PrRd: Processor Read
PrWr: Processor Write e
BusRd: Bus Read o By i
! < >
BusWr: Bus Write 1/0 devices
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Is Two-state Protocol Coherent?

Processor only observes state of memory system by issuing
memory operations
Assume bus transactions and memory operations are atomic and a
one-level cache

— all phases of one bus transaction complete before next one starts

— processor waits for memory operation to complete before issuing next

— with one-level cache, assume invalidations applied during bus
transaction

All writes go to bus + atomicity
— Writes serialized by order in which they appear on bus (bus order)
=> invalidations applied to caches in bus order

How to insert reads in this order?

— Important since processors see writes through reads, so determines
whether write serialization is satisfied

— But read hits may happen independently and do not appear on bus
or enter directly in bus order

Let’s understand other ordering issues

Ordering

Po: —>®—>®—>®—> ®—><I§\ .
P —R—@® ®—>=® =R
pz;—>®—>®—> @»@—»g -

« Writes establish a partial order
« Doesn’t constrain ordering of reads, though
shared-medium (bus) will order read misses too

— any order among reads between writes is fine,
as long as in program order

Example Write Back Snoopy Protocol

¢ Invalidation protocol, write-back cache
— Snoops every address on bus

— Ifit has a dirty copy of requested block, provides that block in
response to the read request and aborts the memory access

¢ Each memory block is in one state:
— Clean in all caches and up-to-date in memory (Shared)
— OR Dirty in exactly one cache (Exclusive)
— OR Not in any caches
¢ Each cache block is in one state (track these):
— Shared : block can be read
— OR Exclusive : cache has only copy, its writeable, and dirty
— ORInvalid : block contains no data (in uniprocessor cache too)
¢ Read misses: cause all caches to snoop bus
* Writes to clean blocks are treated as misses

Write-Back State Machine - CPU

CPU Read hit

State machine
for CPU requests
for each cache block

Non-resident blocks

CPU Read Shared

(read/only)

invalid Place read miss
on bus
CPU Write
Place Write
Miss on bus
CPU Write
Cache Block Place Write Miss on Bus
State Exclusive
CPU read hit (read/write)
CPU write hit CPU Write Miss (?)

Write back cache block
Place write miss on bus
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* State machine
for requests

Write-Back State Machine- Bus request

¢ State machine

Block-replacement

for each for this block Shared for CPU requests CPU Read
(read/only) for each read/onl
cache block cache block Place read miss (read/only)
EEE— on bus
CPU Write
Place Write CPl.J read miss CPU Read miss
Miss on bus Write back blo Place read miss
for this block Place read on bus
Write Back Read miss on bus
Block; (abort for this block CPU Write
memory access) Write Back Cache Block Place Write Miss on Bus
| Block; (abort ) State Exclusive
Exclusive memory access .
(read/write) CPU read hit (read/write) o
CPU write hit CPU Write Miss
Write back cache block
S Place write miss on bus .
Write-back State Machine-lll
, Exampl
* State machine CPU Read hit ample
for CPU requests
for each .
for this block
cache block and 1nvalid CPU Read Shared
for requests Pl e (read/only)
for each ace read miss PL P2 Bus Memory
PU Write on bus ste) State Addr Value State Addr Value Action Proc. Addr Value Addr Value|
cache block Place Write P1Write 10t0 AL
Miss on bus Plse;d glm I
eal
CPU read miss i
for this block CIPU Readdml.ss
. « Place read miss P2 Write 200 AL
Write Bac ) on bus P2 Write 40 to A2
Block; (abort PU Write
memory access) Place Write Miss on Bus
Cache Block i i
Read miss Write Back Assumes Al and A2 map to same cache block,
State Exclusive for this block  Block; (abort L . .
(read/write) memory access) initial cache state is invalid
CPU read hit CPU Write Miss
CPU write hit Write back cache block

Place write miss on bus

10
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P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value
PL1Write 10t0 AL ] Exc. | AL | 10 WiMs |~ P1 AL

P1: Read A1

|
P2: Read AL

P2 Write 20 to AL _]

P2: Write 40 to A2

Assumes Al and A2 map to same cache block

Example
P1 P2 Bus Memory
stey State Addr Value State Addr Value Action Proc. Addr Value Addr Value
P1 Write 10 to A1 Excl. Al 10 WrMs = P1 Al
P1: Read A1l Excl Al 10
P2: Read A1

P2: Write 20 to A1

P2: Write 40 to A2

Assumes Al and A2 map to same cache block

4/21/2011 €5252 506 smp

Example
P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value
[ PIWrite 10to AT JExc. | AL 10 WiMs | P1 Al
P1: Read A1l Excl. Al 10
P2: Read A1 Shar. Al RdMs P2 Al
Shar. AL 10 WBk P1 Al | 10 | A1[10

%}
=
2
>
=
.
o
o
=

Da P2 Al 10 | AL 10

P2: Write 20 to A1_|

P2: Write 40 to A2

Assumes Al and A2 map to same cache block

Example
P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value
[ PIWrite10to AT JExcl. Al | 10 WrMs | P1 Al
[PiReadAl | Excl. Al 10
P2: Read A1 Shar. | Al RdMs P2 Al
Shar. Al 10 WrBk P1 Al 10 | A1 | 10
Shar. A1 10 Rdba P2 Al 10 | A1 | 10
P2 Write 20t0 AT Inv. Excl. Al 20 WrMs P2 Al Al | 10
P2: Write 40 to A2

Assumes Al and A2 map to same cache block

11
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Example Implementation Complications

* Write Races:

— Cannot update cache until bus is obtained

¢ Otherwise, another processor may %(et bus first,
and then write the same cache block!

P1 P2 Bus Memory — Two step process:
step State  Addr _Value State Addr Value Action Proc. Addr Value Addr Value . Arbitrate for bUS
';1 Vé’;‘:fﬁf All EEXTCC‘\ Aﬁ % inds | PL AL . P]ace miss on bus and complete opgration
.. Bdvs [ P2 AL | — If miss oc_curf_to block while waiting for bus
s shar. AL 10 |Rdba b2 AL 10 “ailio handle miss (invalidate may be needed) and then
P2 Write 20 0 AL_| Inv. Exc. AL | 20 |WrMs P2 | Al AL 10 restart.
P2: Write 40 to A2 WrM: P2 A2 A 10 —_ I i .
Bl A2 40 |whk b A 20 “aiT30 Split transaction bus:

¢ Bus transaction js not atomic: .
can have multiple outstanding transactions for a block
¢ Multiple misses can interleave, .
A Aland A2 t he block allowing two caches to grab block in the Exclusive state
ssumes an map to same cache block, ¢ Must track and prevent multiple misses for one block

but All= A2 * Must support interventions and invalidations
Limitations in Symmetric Shared-Memory Performance of Symmetric Shared-
Multiprocessors and Snooping Protocols Memory Multiprocessors
* Singl date all CPU
ing'e rrTemory accommoaate a s * Cache performance is combination of
= Multiple memory banks

i 1. Uniprocessor cache miss traffic
¢ Bus-based multiprocessor, bus must support both

X ! 2. Traffic caused by communication
coherence traffic & normal memory traffic

¢ Results in invalidations and subsequent cache misses
= Multiple buses or interconnection networks (cross

) - e 4t C: coherence miss
bar or small point-to-point)

— Joins Compulsory, Capacity, Conflict
* Opteron

— Memory connected directly to each dual-core chip
— Point-to-point connections for up to 4 chips

— Remote memory and local memory latency are similar, allowing OS
Opteron as UMA computer

12
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Coherency Misses

1. True sharing misses arise from the communication of
data through the cache coherence mechanism
¢ Invalidates due to 1%t write to shared block
e Reads by another CPU of modified block in different cache
e Miss would still occur if block size were 1 word

2. False sharing misses when a block is invalidated
because some word in the block, other than the one
being read, is written into

¢ Invalidation does not cause a new value to be
communicated, but only causes an extra cache miss

e Block is shared, but no word in block is actually shared
= miss would not occur if block size were 1 word

e Assume x1 and x2 in same cache block.
P1 and P2 both read x1 and x2 before.

Example: True v. False Sharing v. Hit?

Time P1 P2 True, False, Hit? Why?
1 Write x1 True miss; invalidate x1 in P2
2 Read X2 |ralse miss; x1 irrelevant to P2
3 | Write x1 False miss; x1 irrelevant to P2
4 Write X2 |False miss; x1 irrelevant to P2
5 Read x2 True miss; invalidate x2 in P1

MP Pertformance: 4 Processor
Commercial Workload: OLTP, Decision Support
(Database), Search Engine

® True sharing and 3.25 -
false sharing 3+ -

. 275 4 mInstruction
unchanged going E : 0 Capacity/Conflict
from1MBto8MB & 2% oCold [

13 he) ‘E 2.25 B False Sharing —
(L3 cac £ 2+ O True Sharing -
]
. g 1.75
L]
Uniprocessor g 15 .
cache misses E125
improve with > 14 j—
. . e
cache size increase  E 0.75 - — —
(Instruction, = 05-
Capacity/Conflict, 0.25 -
Compulsory) 0 T .
1MB 2MB 4MB 8 MB
Cache size

e True sharing,
false sharing
increase going
from 1 to 8 CPUs

MP Performance 2MB Cache
Commercial Workload: OLTP, Decision Support
(Database), Search Engine

3
mInstruction
O Conflict/Capacity
[|zcold

5 2.5+
T mFalse Sharing
-E 2 -—{@True Sharing -
=
]
215
o
% -
14
g
E
A
=05 -
0
1 2 4 6 8

Processor count

13
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A Cache Coherent System Must:

¢ Provide set of states, state transition diagram, and actions
* Manage coherence protocol
— (0) Determine when to invoke coherence protocol

— (a) Find info about state of block in other caches to determine
action

* whether need to communicate with other cached copies
— (b) Locate the other copies
— (c) Communicate with those copies (invalidate/update)
¢ (0) is done the same way on all systems
— state of the line is maintained in the cache
— protocol is invoked if an “access fault” occurs on the line
¢ Different approaches distinguished by (a) to (c)

Bus-based Coherence

All of (a), (b), (c) done through broadcast on bus
— faulting processor sends out a “search”
— others respond to the search probe and take necessary action
* Could doit in scalable network too
— broadcast to all processors, and let them respond
¢ Conceptually simple, but broadcast doesn't scale with p
— on bus, bus bandwidth doesn’ t scale
— on scalable network, every fault leads to at least p network transactions
* Scalable coherence:
— can have same cache states and state transition diagram
— different mechanisms to manage protocol

Scalable Approach: Directories

* Every memory block has associated directory

information

— keeps track of copies of cached blocks and their states

— on a miss, find directory entry, look it up, and
communicate only with the nodes that have copies if
necessary

— in scalable networks, communication with directory
and copies is through network transactions

¢ Many alternatives for organizing directory
information

Basic Operation of Directory

o k processors.

¢ With each cache-block in memory:
k presence-bits, 1 dirty-bit

¢ With each cache-block in cache:
1 valid bit, and 1 dirty (owner) bit

presence bits dirty bit

® Read from main memory by processor i:
If dirty-bit OFF then { read from main memory; turn p[i] ON; }

if dirty-bit ON then { recall line from dirty proc (cache state to
shared); update memory; turn dirty-bit OFF; turn p[i] ON; supply
recalled data to i;}

« Write to main memory by processor i:

® |f dirty-bit OFF then { supply data to i; send invalidations to all
caches that have the block; turn dirty-bit ON; turn p[i] ON; ... }

14
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Directory Protocol

¢ Similar to Snoopy Protocol: Three states
— Shared: > 1 processors have data, memory up-to-date
— Uncached (no processor hasit; not valid in any cache)
— Exclusive: 1 processor (owner) has data;
memory out-of-date
* In addition to cache state, must track which processors
have data when in the shared state (usually bit vector, 1
if processor has copy)
¢ Keep it simple(r):
— Writes to non-exclusive data
=> write miss
— Processor blocks until access completes

— Assume messages received
and acted upon in order sent

Directory Protocol

* No bus and don’ t want to broadcast:
— interconnect no longer single arbitration point
— all messages have explicit responses
e Terms: typically 3 processors involved
— Local node where a request originates
— Home node where the memory location
of an address resides
— Remote node has a copy of a cache
block, whether exclusive or shared
¢ Example messages on next slide:
P = processor number, A = address

Directory Protocol Messages (Fig 4.22)

Message type Source Destination Msg Content
Read miss Local cache PA
— Processor P reads data at address A;
make P a read sharer and request data
Write miss Local cache P A
— Processor P has a write miss at address A;
make P ihe exciusive owner and requesi daia

Invalidate Remote caches A
— Invalidate a shared copy at address A
Fetch Remote cache A

— Fetch the block at address A and send it to its home directory;
change the state of A in the remote cache to shared
Fetch/Invalidate
— Fetch the block at address A and send it to its home directory;
invalidate the block in the cache
Data value reply Local cache Data
— Return a data value from the home memory (read miss response)
Data write back Remote cache A, Data
— Write back a data value for address A (invalidate response)

Remote cache A

State Transition Diagram for One Cache
Block in Directory Based System

e States identical to snoopy case; transactions
very similar.

¢ Transitions caused by read misses, write
misses, invalidates, data fetch requests

¢ Generates read miss & write miss msg to home
directory.

* Write misses that were broadcast on the bus
for snooping => explicit invalidate & data fetch
requests.

¢ Note: on a write, a cache block is bigger, so
need to read the full cache block

15
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CPU -Cache State Machine

State machine
for CPU requests
for each

memory block
Invalid state

if in memory

send Data Write Back message
to home directory

CPU read hit
CPU write hit

CPU Read hit

Shared
(read/only)

CPU Read
Send Read Miss
message

CPU read miss:
Send Read Miss
CPU Write: Send

Write Miss message

to home directory

Fetch: send Data Write Back
message to home directory
CPU read miss: send Data Write
Back message and read miss to
home directory

Exclusive
(read/write)
CPU write miss:

send Data Write Back message

and Write Miss to home directory o

State Transition Diagram for Directory

* Same states & structure as the transition
diagram for an individual cache

e 2 actions: update of directory state & send
messages to satisfy requests

* Tracks all copies of memory block

¢ Also indicates an action that updates the
sharing set, Sharers, as well as sending a
message

Directory State Machine

State machine

for Directory requests for

each memory block
Uncached state

Read miss:
Sharers += {P};

Read miss: send Data Value Reply

Sharers = {P}
send Data Value
Reply

Shared
(read only)

if in memory
Write Miss: Write Miss:
. Sharers = {P}; .
Data Write Back: send Invalidate

send Data

Sharers = {} Value Reply to Sharers;
(Write back block) ms then Sharers = {P};
8 send Data Value
Reply msg
Write Miss: Read miss

Sharers = {P};

send Fetch/Invalidate;
send Data Value Reply
msg to remote cache

Sharers += {P};

send Fetch;

send Data Value Reply
msg to remote cache
(Write back block)

Exclusive
(read/write)

Example Directory Protocol

Message sent to directory causes two actions:

— Update the directory

— More messages to satisfy request
Block is in Uncached state: the copy in memory is the current value; only
possible requests for that block are:

— Read miss: requesting processor sent data from memory &requestor made
only sharing node; state of block made Shared.
— Write miss: requesting processor is sent the value & becomes the Sharing

node. The block is made Exclusive to indicate that the only valid copy is cached.

Sharers indicates the identity of the owner.
Block is Shared => the memory value is up-to-date:
— Read miss: requesting processor is sent back the data from memory &
requesting processor is added to the sharing set.
— Write miss: requesting processor is sent the value. All processors in the set
Sharers are sent invalidate messages, & Sharers is set to identity of requesting
processor. The state of the block is made Exclusive.
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Example Directory Protocol Example
* Block is Exclusive: current value of the block is held in the cache of the
processor identified by the set Sharers (the owner) => three possible
directory requests: Processor 1  Processor 2 Interconnect Directory  Memory
— Read miss: owner processor sent data fetch message, causing state of block .
N s L P2 Bus Directo Memon
in owner’ s cache to transition to Shared and causes owner to send data to step \s.me Addr ValuglState Addr Value|Action Proc. Addr Value |Addr State {Procs}|Value
directory, where it is written to memory & sent back to requesting o
rite 10 to A1
processor. e e ‘
Identity of requesting processor is added to set Sharers, which still contains o e
the identity of the processor that was the owner (since it still has a readable ‘
copy). State is shared.
3 . . P2: Write 20 to A1
— Data write-back: owner processor is replacing the block and hence must |
write it back, making memory copy up-to-date P2: Write 40 to A2 [
(the home directory essentially becomes the owner), the block is now ‘
Uncached, and the Sharer set is empty.
— Write miss: block has a new owner. A message is sent to old owner causing
the cache to send the value of the block to the directory from which it is
sent to the requesting processor, which becomes the new owner. Sharers is Al and A2 map to the same cache block
set to identity of new owner, and state of block is made Exclusive.
Example Example
Processor 1 Processor 2 Interconnect Directory  Memory Processor 1~ Processor 2 Interconnect Directory Memory
P1 P2 Bus Directory Memon
step State Addr Value|State Addr Value|Action Proc. Addr Value|Addr State {Procs}|Value
P1 Write 10 to AL Wiis| P1 | AL AL B L} stey ‘;tl Addr Valud S ddr Val ius Proc. Addr Val E\)‘JEC'@W & \ve\mop
Excl AL 10 DaRp PL AL 0 p ate r Valug State| Addr Valus Wct’:;‘m ;ch Alr alue Al[ E’ne { ;ulcs‘, alue
P1: Read AL [ P1Write 1010 AL |5 AT 10 T;RS PTTAL 0 Ex (P}
P2: Read AL _ “PL Read AL [Excl._AL 10
‘ P2: Read Al

P2: Write 20 to A1

P2: Write 40 to A2

Al and A2 map to the same cache block

P2: Write 20 to A1

P2: Write 40 to A2

Al and A2 map to the same cache block
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Example Example

Processor 1  Processor 2 Interconnect Directory  Memory Processor 1 Processor 2 Interconnect Directory  Memory
Pl 2 Bus Directory Memon ‘Pl P2 Bus Directory Memon
step State Addr Value{State Addr Valug Action Proc. Addr Value|Addr State {Procs}|Value L step State Addr ValueState Addr Value|Action Proc. Addr Value |Addr State {Procs}|Value
WrMs| P1 Al Al Ex {P1} WrMs| P1 | Al Al  Ex P1]
PTWrite 1010 AL TE T T AT [ 10 DaRp PL AL 0 PLWrite 100 Al el | Al | 10 DaRp P1 | AL 0
P1: Read AL [Excl. AL 10 (_PL Read AL [Excl. AL 10
PZ: Read Al |Shar.” AT RdVis| P2 | AL PZ: Read Al |Shar.” AT RdMs| P2 | AL |

Shar. AL 10 Fich  PL AL 10 ‘Shav AL 10 Ftch | PL | AL | 10 [0
‘ Shar. AL 10 yDaRp P2 Al 10 | Al Shar. (P1p2) 1 Shar. AL 10 |DaRp P2 Al 10 | Al Shar. {P1P2}|

P2: Write 20 to Al P2: Write 20 to Al } Excl. Al | 20 [WrMs P2 | Al

Inv.

5
2
2
)
bt
b3
[

Excl. {P2

P2 Write 40 to A2 P2: Write 40 to A2

Write

Back Al and A2 map to the same cache block

Al and A2 map to the same cache block

Example Implementing a Directory

¢ We assume operations atomic, but they are not;

Processor 1 Processor 2 Interconnect Directory  Memory . . .
P1 Pz Bus I e Memo reality is much harder; must avoid deadlock when
step | Statd Addl| Valud Stat{ Addj Valud Actiol Proc] Addi Valuel Ad Value . .
PT: Write 10 o AT | Wris | P1 ] AT run out of bufffers in network (see Appendix E)
‘EXiC/- Al |10 DaRp | P1 | A1 0
P1: Read A1 Excl.| A1] 10 H H H .
P2: R::d Al [ < Shar. [AT RaMs | P2 | A1 ° Opt|m|zat|ons.
har. | AT 10 | Ftch [ P1[AT] 10 10 . . L .
[Shar.| AT | 70 |paRp| P2 [ A1 | 10 | AT bhar, [P.P2I[ 10 — read miss or write miss in Exclusive: send data
Excl.| A1 [ 20 WrMs| P2 | A1 10 .
Iov. Ioval | P1 [ Al A [xcl [ /P21 | 10 directly to requestor from owner vs. 1st to
P2: Write 40 to A2 WrMs | P A2 A2 |Excl. | {P2} 0
wibk | P2 | A1120 [A] bnca] 7 | 20 memory and then from memory to requestor
Excl.|AZ | 40 [DaRp| P2 | A2 | 0 |A2 |Excl.[{P2} | ©

Al and A2 map to the same cache block
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Basic Directory Transactions

Requestor Requestor

1
RAEx requed
o directory

[

Dikctorynode

Node with
irtycopy

(a) Read miss to a block in dirty state

(b)Write miss to a block witltsharers

Example Directory Protocol (15t Read)

P1: pA
R/reply

— 1

[
) )
5 s % e

Read pA

1d VA -> rd pA

Example Directory Protocol (Read Share)

P1:pA R/ Dir .
P2: pA R/reply | ctr|

R/C v s H v
R/req R/req|
Id vA -> rd pA
Id vA -> rd pA

Example Directory Protocol (Wr to shared)

RX/invalidate&reply
P1: pA EX R/

®
S

Inv/_
st vA ->wr pA
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Example Directory Protocol (Wr to Ex)

RU/|
RX/invalidate&reply

st vA ->wr pA

A Popular Middle Ground

Two-level “hierarchy”

Individual nodes are multiprocessors, connected
non-hierachically

— e.g. mesh of SMPs

Coherence across nodes is directory-based

— directory keeps track of nodes, not individual processors
Coherence within nodes is snooping or directory

— orthogonal, but needs a good interface of functionality

SMP on a chip directory + snoop?

And in Conclusion ...

¢ Caches contain all information on state of cached
memory blocks

¢ Snooping cache over shared medium for smaller
MP by invalidating other cached copies on write

¢ Sharing cached data = Coherence (values
returned by a read), Consistency (when a written
value will be returned by a read

* Snooping and Directory Protocols similar; bus
makes snooping easier because of broadcast
(snooping => uniform memory access)

¢ Directory has extra data structure to keep track of
state of all cache blocks

* Distributing directory => scalable shared address
multiprocessor )
=> Cache coherent, Non uniform memory access
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