3/28/2011

Since 1980, CPU Speed has outpaced DRAM ...
Q. How do architects address this gap?
A. Put smaller, faster “cache” memories
Performance between CPU and DRAM.
(1hatency) Create a “memory hierarchy”. g(l;y
. 1000 cru b per yr
Memory Hierarchy (2Xin 1.5 yrs
400
Gap grew 50% per
55:132/22C:160 year
. A0 DRAM
Spring 2011 / = 9% per yr
2Xin 10 yrs
1080 N 20®
Year
Memory Hierarchy - Levels of the Memory Hlerarch\(}ppar Lovel
gggf"s Time Staging
Xter Unit faster
‘IC:;E Instr. Operands prog/compiler
i
.01 cents/byte
5 o [Blocks 58 byres
8 stery m
'8 ZOnZ-TPi?J-Ons vtes | emory |
© $.001-.0001 cents /byte P 0s
2 Disk I ages 512-4K bytes
w G Bytes-T Bytes
% 10 ms (10,000,000 ns) Disk |
108-10° cents/byte I Files user/operator
Tape Larger
L'Lc'"r'rr.i | Tape | Lower Level

3/28/2011

3/28/2011

Why De We Need a Memory Hierarchy?

Processors consume lots of memory bandwidth, e.g.:

Need lots of memory

— Gbytes to multiple TB

Must be cheap per bit

— (TB x anything) is a lot of money!

These requirements seem incompatible

Memory Hierarchy

¢ Fast and small memories (SRAM)

— Enable quick access (fast cycle time)

— Enable lots of bandwidth (1+ Load/Store/I-fetch/cycle)

— Expensive, power-hungry
¢ Slower larger memories (DRAM)

— Capture larger share of memory

— Still relatively fast

— Cheaper, low-power
¢ Slow huge memories (DISK, SSD)

— Really huge (Tbytes)

— Really cheap (think $100/Tbyte

— Really slow

e All together: provide appearance of large, fast
memory with cost of cheap, slow memory

Why Does a Hierarchy Work?

Locality of reference
— Temporal locality
* Reference same memory location repeatedly
— Spatial locality
* Reference near neighbors around the same time
Empirically observed
— Significant!
— Even small local storage (8KB) often satisfies >90%
of references to multi-MB data set

Memory Address (one dot per access)

Programs with locality cache well ...

w‘.l/ —_~ _Bad locality behavior

Donald J. Hatfield, Jeanette Gerald: Program Restructuring for
Virtual Memory. IBM Systems Journal 10(3): 168-192 (1971)

3/28/2011

Why Does a Hierarchy Work? (Continued)

¢ More Reads than Writes
— All instruction fetches are reads
— Most data accesses are reads

e Memory hierarchy can be designed to
optimize read performance

Memory Hierarchy: Terminology

Hit: data appears in some block in the upper level (example:
Block X)
— Hit Rate: the fraction of memory access found in the upper level
— Hit Time: Time to access the upper level which consists of
RAM access time + Time to determine hit/miss
Miss: data needs to be retrieve from a block in the lower level
(Block Y)
— Miss Rate =1 - (Hit Rate)
— Miss Penalty: Time to replace a block in the upper level +
Time to deliver the block the processor

Hit Time << Miss Penalty

Lower Level
To Processor__| Upper Level Memory
Memory
Blk X
From Processor BIKY

Cache Measures

e Hit rate: fraction of accesses found in that level
— So high that usually talk about Miss rate (= 1 — Hit rate)
* Average memory-access time
= Hit time + Miss rate x Miss penalty
(ns or clocks)
e Miss penalty: time to replace a block from lower
level, including time to replace in CPU
— access time: time to lower level
= f(latency to lower level)
— transfer time: time to transfer block
=f(BW between upper & lower levels)

Cache Performance

Let hit time = t,, miss penalty = t,,, miss rate =m
Suppose t, =1, t,, =10

— Form=.01,t,.=1.09

— form=.05, t, . =1.45

—form=.1,t,,.=19

— form=.25,t,.=3.25

—form=.5,t,.=55

— form=.75,t,,.=7.75

Bottom line: for low miss rates, effective memory
performance approaches that of the cache

Key to cache memory design is to minimize the miss
rate.

3/28/2011

Memory Hierarchy

Temporal Locality

«Keep recently referenced
items at higher levels

«Future references satisfied
quickly

Spatial Locality

«Bring neighbors of recently
referenced to higher levels

= Future references satisfied

quickly

Example Cache Latencies

L1 Size / L1 Latency

L2 Size / L2 Latency

L3 Size / L3 Latency
Main Memory Latency
(DDR3-1600 CAS7)

*Note 6MB per 2 cores
**Note 8MB per 4 cores

64KB / 4 cycles

256KB / 11 cycles

8MB** /39 cycles N/A

107 cycles (33.4 ns)

64KB / 3 cycles

6MB* / 15 cycles

160 cycles (50.3 ns)

Memory Hierarchy Basics

¢ Main Memory is logically organized into units called

blocks

* Block size = 2% bytes (k is usually in the range 1 -15)
* Memory is moved between hierarchy levels in block

units

¢ Block size may be different for

— memory< ->cache (cache block or “line”)
— memory < - > secondary storage—(virtual memory page)

Basic Cache Organization

—

line size 20 bytes

line 0
line 1

line 2

line 2¢-1

Cache
(2¢*0 bytes)

—— blocksize 2° bytes

—

—

Main Memory
T (2™ bytes)

m >>c

block 0
block 1

block 2m-1

3/28/2011

Cache--Four Important Questions

* Block Placement
Where in the cache can a block of memory go?
* Block Identification
How to resolve a memory reference?
— Is the block currently in the cache?
— If so, where?
— If not, what happens?
* Block Replacement
* What happens when a new block is loaded into the cache
following a miss?
* Which block should be displaced from the cache to make
room for the new one?
— Write Policy
¢ How to deal with write operations?

— to cache only, update main memory only when block is displaced
from cache (write back)

— to cache and main memory (write through)

Q1: Where can a block be placed in the
upper level?
¢ Block 12 placed in 8 block cache:

— Fully associative, direct mapped, 2-way set associative
— S.A. Mapping = Block Number Modulo Number Sets

Direct Mapped 2-Way Assoc
Full Mapped (15 1od8)= 4 (12 mod 4) = 0

01234567 01234567 01234567
Cache . I
1111111111222222222233
01234567890123456789012345678901
Memory
3282011 18

Placement

Block(line) Size 2°

Address

¢ Memory Address Range
— Exceeds cache capacity

¢ Map address to cache size
— Called a hash

— Usually just masks high-order bits
of address

2¢cache
lines

e Direct-mapped
— Block can only exist in one cache
location—i.e. any block with index
r maps into cache line r

Data Out

— Hash collisions cause problems— 32-bit Address:
i.e. lots of memory blocks map to
the same cache line

Placement

Address

Fully-associative

— A Block may be placed
anywhere in the cache

— No more hash collisions
Identification

— How do I know I have the right
block?

— Called a tag check

¢ Must store address tags

¢ Compare against address
Expensive!
— Tag & comparator per line

) Data Out
32-bit Address

32-b b

3/28/2011

K-way set-associative
— “Logically organize cache into
sets of size K'=2* lines each
— Memory block maps to a single
set (like direct mapped)
— BUT block can be placed in any Index
line in the set.
Identification
— Still perform tag check
— However, only need to check tag
in the mapped set
— Can perform the k tag checks in
parallel.

— Typically k is small (in the range
of 2-8) Tag

— Note: Direct-mapped is a special

case of set-associative with k =0
— Note: Fully associative is a special

case of set associative with k= ¢ Note: A Valid Array
is also needed, but is

not shown here.

*Oﬁset

Placement and Identification

32-bit Address c-k b
Portion Length Purpose
Offset b=log,(block size in bytes) | Select byte within block
Index (c-k)=log,(number of sets) | Select set of cache lines
Tag t=32-b —(c-k) Block ID

Total Cache Size = (2P bytes/line)x(2* lines/set)x
(2¢k sets) = 2b* bytes
¢ Note: An additional tag array is required:
— Tag Array Size = (2* tags per set)x(2* sets) = 2 tags
* Each tag is 32-b-(c-k) bits

Hit rate vs. cache organization (Spec 2000

iqtegqr bepchrparks)

“ -
Direct s—
DN e
AN —
b 3 Bww E
Full ——
oo |-
2 oo
] B
16005 |-
le-005 |-
L L 1 L L
® ® WK s 2K W Int

cache sk
Data source: http://www.cs.wisc.edu/multifacet/misc/spec2000cache-data/

Q3: Replacement

* Cache (set) has finite size

— What do we do when it is full?
e Analogy: desktop full?

— Move books to bookshelf to make room
* Same idea:

— Move blocks to next lower level of cache

3/28/2011

Replacement

* How do we choose victim to be replaced?
* Several policies are possible
— FIFO (first-in-first-out)
— LRU (least recently used)
— NMRU (not most recently used)
— Pseudo-random (yes, really!)
¢ Pick victim within set where K = associativity
— If K=2, LRU is cheap and easy (1 bit)
— If K> 2, it gets harder
— Pseudo-random works pretty well for caches

Cache Replacement Policy Performance

* Easy for Direct Mapped (only one choice)
¢ Set Associative or Fully Associative:

— Rand (Random)

— LRU (Least Recently Used)

Assoc: 2-way 4-way 8-way

Size LRU Rand LRU Rand LRU Rand
16 KB 52% 57% 4.7% 53% 4.4% 5.0%
64 KB 1.9% 2.0% 1.5% 1.7% 1.4% 1.5%
256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%

Q4: Write Policy

¢ Memory hierarchy
— 2 or more copies of same block
¢ Cache/Main memory /disk
* What to do on a write?
— Eventually, all copies must be changed
— Write must propagate to all levels

Write Policies

Write-Through Write-Back
. Write data only to the
Data written to cache cache
. block
Policy .
also written to lower- Update lower level
level memory when a block falls out
of the cache
Do read misses No Yes

produce writes?

Do repeated writes
make it to lower Yes No
level?

Additional option -- let writes to an un-cached address allocate a
new cache line (“write-allocate”).

3/28/2011

Write Policy

Easiest policy: write-through

Every write propagates directly through hierarchy
— Write in L1, L2, memory, disk (?!?)

Drawbacks?

— Very high bandwidth requirement

— Remember, large memories are slow

Popular in real systems only to the L2

— Every write updates L1 and L2

— Beyond L2, use write-back policy

Write Buffers for Write-Through Caches

Lower
Level
Memory

Processor

Holds data awaiting write-through to
lower level memory

Q. Why a write buffer ? A. So CPU doesn't stall

Q. Why a buffer, why not A, Bursts of writes are
just one register ? common.

Q. Are Read After Write A. Yes! Drain buffer before
(RAW) hazards an issue next read, or send read 15t
after check write buffers.

for write buffer?

Write Policy

Most widely used: write-back

Maintain state of each line in a cache

— Invalid — not present in the cache

— Clean — present, but not written (unmodified)
— Dirty — present and written (modified)
Store state in tag array, next to address tag
— Mark dirty bit on a write

On eviction, check dirty bit

— If set, write back dirty line to next level

— Called a write-back or cast-out

Write Policy

Complications of write-back policy

— Stale copies lower in the hierarchy

— Must always check higher level for dirty copies before
accessing copy in a lower level

Not a big problem in uniprocessors

— In multiprocessors: the cache coherence problem

1/0 devices that use DMA (direct memory access)

can cause problems even in uniprocessors

— Called coherent I/0

— Must check caches for dirty copies before reading main
memory

3/28/2011

Caches and Performance

¢ Caches

— Enable design for common case: cache hit
¢ Cycle time, pipeline organization
* Recovery policy

— Uncommon case: cache miss
 Fetch from next level

— Apply recursively if multiple levels
* What to do in the meantime?
¢ What is performance impact?

* Various optimizations are possible

Cache Performance Impact

e Cache hit latency
— Included in “pipeline” portion of CPI

— Typically 1-3 cycles for L1 cache
* Intel/HP McKinley: 1 cycle
— Heroic array design
— No address generation: load r1, (r2)
¢ IBM Power4: 3 cycles
— Address generation
— Array access
— Word select and align

Example Cache Latencies

L1 cache hit latency

1 Size / L1 Latency 64KB / 4 cycles 64KB / 3 cycles

L2 Size / L2 Latency 256KB / 11 cycles 6MB* / 15 cycles

L3 Size / L3 Latency 8MB** /39 cycles N/A
Main Memory Latency
(DDR3-1600 CAS7) 107 cycles (33.4 ns) 160 cycles (50.3 ns)

*Note 6MB per 2 cores
**Note 8MB per 4 cores

Cache Misses and Performance

¢ Miss penalty
— Detect miss: 1 or more cycles

— Find victim (replace line): 1 or more cycles
¢ Write back if dirty

— Request line from next level: several cycles

— Transfer line from next level: several cycles
¢ (block size) / (bus width)
— Fill line into data array, update tag array: 1+ cycles
— Resume execution
* |n practice: 6 cycles to 100s of cycles

3/28/2011

Example Cache Latencies

Miss penalty for L1 miss

L1 Size / L1 Latency 64KB / 4 cycle 64KB / 3 cycles
L2 Size / L2 Latency 256KB / 11 cycles 6MB* / 15 cycles
L3 Size / L3 Latency 8MB** /39 cycles N/A

Main Memory Latency
(DDR3-1600 CAS7)

*Note 6MB per 2 cores
**Note 8MB per 4 cores

107 cycles (33.4 ns) 160 cycles (50.3 ns)

Cache Miss Rate

e Determined by:

— Program characteristics
* Temporal locality
* Spatial locality
— Cache organization
* Block size, associativity, number of sets

Improving Locality

¢ Instruction text placement
— Profile program, place unreferenced or rarely
referenced paths “elsewhere”
* Maximize temporal locality
— Eliminate taken branches
* Fall-through path has spatial locality

Improving Locality

Data placement, access order

— Arrays: “block” loops to access subarray that fits into cache

¢ Maximize temporal locality

— Structures: pack commonly-accessed fields together
¢ Maximize spatial, temporal locality

— Trees, linked lists: allocate in usual reference order
¢ Heap manager usually allocates sequential addresses
¢ Maximize spatial locality

Hard problem, not easy to automate:

— C/C++ disallows rearranging structure fields

— OKin Java

10

3/28/2011

Cache Miss Rates: 3 C’s [Hill]

e Compulsory miss

— First-ever reference to a given block of memory
¢ Capacity

— Working set exceeds cache capacity

— Useful blocks (with future references) displaced
e Conflict

— Placement restrictions (not fully-associative) cause useful
blocks to be displaced

— Think of as capacity within set

Cache Miss Rate Effects

¢ Number of blocks (sets x associativity)

— Bigger is better: fewer conflicts, greater capacity
* Associativity

— Higher associativity reduces conflicts

— Very little benefit beyond 8-way set-associative
* Block size

— Larger blocks exploit spatial locality

— Usually: miss rates improve until 64B-256B

— 512B or more miss rates get worse

« Larger blocks less efficient: more capacity misses
* Fewer placement choices: more conflict misses

Cache Miss Rate

¢ Subtle tradeoffs between cache organization
parameters

— Large blocks reduce compulsory misses but increase
miss penalty
« #compulsory = (working set) / (block size)
 #transfers = (block size)/(bus width)
— Large blocks increase conflict misses
 #blocks = (cache size) / (block size)
— Associativity reduces conflict misses
— Associativity increases access time
¢ Can associative cache ever have higher miss rate
than direct-mapped cache of same size?

Cache Miss Rates: 3 C’s

B Conflict
W Capacity
W Compulsory

Miss per Instruction (%9
OR NWMOGOON®O
Il

8K1W 8K4W 16K1W 16K4W
¢ Vary size and associativity
— Compulsory misses are constant
— Capacity and conflict misses are reduced

11

3/28/2011

Cache Miss Rates: 3 C’s

M Conflict
M Capacity
Il Compulsory

Miss per Instruction (29
ORNWMION®

d&

EY
SN

»
& &
* Vary size and block size
— Compulsory misses drop with increased block size
— Capacity and conflict can increase with larger blocks

Cache Misses and Performance

e How does this affect performance?
* Performance = Time / Program

_ Instructions Cycles Time
Program Instruction Cycle
(code size) (CPI) (cycle time)

* Cache organization affects cycle time
— Hit latency
* Cache misses affect CPI

Cache Misses and CPI

cycles _ cycles,;, . cycles, ;.
inst inst inst
_ (:y_cleshit N cyc?les “ r_niss
inst miss inst
_ cyclesy;

CPI =

+ Miss _ penalty x Miss _ rate

* Cycles spent handling misses are strictly additive

¢ Miss_penalty is recursively defined at next level of
cache hierarchy as weighted sum of hit latency and
miss latency

Cache Misses and CPI

cycles,;,
inst

CP| ==t +ZP><MPI

* P,is miss penalty at each of n levels of cache
* MPI, is miss rate per instruction at each of n levels of

cache

¢ Miss rate specification:

— Per instruction: easy to incorporate in CPI

— Per reference: must convert to per instruction
* Local: misses per local reference
* Global: misses per ifetch or load or store

12

3/28/2011

Cache Performance Example

¢ Assume following:
— L1 instruction cache with 98% per instruction hit rate
— L1 data cache with 96% per instruction hit rate
— Shared L2 cache with 40% local miss rate
— L1 miss penalty of 8 cycles
— L2 miss penalty of:
¢ 10 cycles latency to request word from memory
¢ 2 cycles per 16B bus transfer, 4x16B = 64B block transferred
* Hence 8 cycles transfer plus 1 cycle to fill L2
* Total penalty 10+8+1 = 19 cycles

Cache Performance Example

cpi = Yl Sop v,
inst =

CPI =115+ 8cycles ><[O.OZmlss . 0.04m|ss]

miss inst inst
19cycles 0.40miss 0.06ref
aF s X X —
miss ref inst
19cycles 5 0.024miss

miss inst
=1.15+0.48+0.456 = 2.086

=1.15+0.48+

Cache Misses and Performance

¢ CPl equation
— Only holds for misses that cannot be overlapped with
other activity

— Store misses often overlapped
¢ Place store in store queue
* Wait for miss to complete
¢ Perform store
* Allow subsequent instructions to continue in parallel

— Modern out-of-order processors also do this for loads

* Cache performance modeling requires detailed modeling of entire
processor core

5 Basic Cache Optimizations
* Reducing Miss Rate

1. Larger Block size (compulsory misses)

2. Larger Cache size (capacity misses)

3. Higher Set Associativity (conflict misses)
¢ Reducing Miss Penalty

4. Multilevel Caches
¢ Reducing hit time

5. Giving Reads Priority over Writes

e E.g., Read complete before earlier writes in write
buffer

13

3/28/2011

Miss Rates for
Varying cache
size

Distribution of
Miss Rates for v
Varying cache '
size

Miss Rate as a Function of Block Size

Miss ’
ate 9%
‘\ﬂg = -.’_.__________._-. 16K
B 2 oa
A
00] 1 X ! 256K
16 32 64 128
Block size

30 P . A rcpen e

Two-level Cache Performance as a Function of
L2 Size and Hit Time

glaz BL

8 clock cycles
16 clock cyeles

Second-level
cache size (KB)

1.00 1.25 1.50 1.75 2.00 2.25 250
Relative execution time

520 i e 4 e et

Main Memory

» Memory organization
— Interleaving
— Banking
» Memory controller design

14

3/28/2011

Simple Main Memory

 Consider these parameters:
— 1 cycle to send address
— 6 cycles to access each word
— 1 cycle to send word back
* Miss penalty for a 4-word block
-(1+6+1)x4=32
» How can we speed this up?

Wider(Parallel) Main Memory

» Make memory wider

— Read out all words in parallel
* Memory parameters

— 1 cycle to send address

— 6 to access a double word

— 1 cycle to send it back
 Miss penalty for 4-word block: 1+6+1 = 16
» Costs

— Wider bus

— Larger minimum expansion unit

Interleaved Main Memory
e Break memory into M banks

— Word Ais in bank A mod M at
address A div M

e Banks can operate concurrently
and independently

Byte in Word
Word in Doubleword

Bank

D din bank

» Each bank has
— Private address lines
— Private data lines
— Private control lines (read/write)

The Limits of Physical Addressing

“Physical addresses” of memory locations

A0-A31 A0-A31
CPU Memory
DO0-D31 DO0-D31

I Data I

All programs share one address space:
The physical address space

Machine language programs must be
aware of the machine organization

No way to prevent a program from
accessing any machine resource

15

3/28/2011

Solution: Add a Layer of Indirection

“Virtual Addresses” “Physical Addresses”

[| [|

A0-A31 Virtual Physical A0-A31
CPU Address Memory
Translation
DO0-D31 DO0-D31
| Data |

User programs run in an standardized
virtual address space

Address Translation hardware
managed by the operating system (OS)
maps virtual address to physical memory

Hardware supports “modern” OS features:
Protection, Translation, Sharing

Three Advantages of Virtual Memory

e Translation:
— Program can be given consistent view of memory, even though
physical memory is scrambled
— Makes multithreading reasonable (now used a lot!)
— Only the most important part of program (“Working Set”) must
be in physical memory.
— Contiguous structures (like stacks) use only as much physical
memory as necessary yet still grow later.
e Protection:
— Different threads (or processes) protected from each other.
— Different pages can be given special behavior
* (Read Only, Invisible to user programs, etc).
— Kernel data protected from User programs
— Very important for protection from malicious programs
e Sharing:
— Can map same physical page to multiple users
(“Shared memory”)

3/28/2011 62

Page tables encode virtual address spaces

Avirtual address space

Virtual Physical is divided into blocks
Address Space Address Space
of memory called pages
frame
frame Fage Size -
rame A machine usually
frame 4 Khytaz

SuppOI’tS 16 Kbytics
pages of afew |qixoyes |
S|Zes 256 Kbytcs
(MIPS R4000) 1 Mbyle

4 Mbytes
16 Mbyies
—

Avalid page table entry codes physical memory
“frame” address for the page

Page tables encode virtual address spaces

Page Table Me:‘fxsy'csa;ace A virtual address space
is divided into blocks
frame of memory called pages
A frame
b frame | .
rame Amachine usually "

4 Khytar

supports pages of A ey T
few sizes (MIPS 6 Kbytes |

virtual

address R4000) 236 Kbytes |
1 Mbyte

oS 4 Mbites

manages L. 16 Mbyies

the page A page table is indexed by a -

table for :

ot ASID virtual address

Avalid page table entry codes physical memory
“frame” address for the page

16

3/28/2011

Details of Page Table

Physical

Page Table
Memory Space

Virtual Address
frame —12—

A
frame V page no.

frame

frame Page Table
Page Table r T
Base Reg : H

y Access 1

index V irights | PA
. % T
virtual matoe -
address fabgle table located
in physica
memory —1)—

Physical Address
¢ Page table maps virtual page numbers to physical frames
(“PTE” = Page Table Entry)

¢ Virtual memory => treat memory ~ cache for disk

3

1

Page tables may not fit in memory!

Atable for 4KB pages for a 32-bit address
space has 1M entries
Each process needs its own address space!

Two-level Page Tables

32 bit virtual address

31 22 21 12 1 o
| P1index | P2 index |PagEOffset |

Top-level table wired in main memory

Subset of 1024 second-level tables in
main memory; rest are on disk or
unallocated

VM and Disk: Page replacement policy

Head pointer ~ e
Place pages on free lisf
if used bit

is still clear.

Schedule pages with
dirty bit set to

be written to disk.

in Memory l, Tail pointer:
\\ Clear the used
P 4 \ /J bitinthe
7/ page table

Architect’s role:
support setting dirty
and used bits

Page Table
Dirty bit: page dirty fised
— written. 1 [0
~ ~ 10 |
/7 \ Used bit: setto [g 1
\ 1onany 11
reference o |o
I Set of all pages |4/

Freelist

Free Pages

MIPS Address Translation: How does it work?

“Physical Addresses”

|

“Virtual Addresses”

AO-A3L rtual ysical AO-A3L
Translation
cpPU Look-Aside Memory
DO-D31 (B_Il_'jlffs)r DO-D31
I Data IWhat is the
. . table of
Translation Look-Aside Buffer (TL mappings
A small fully-associative f that it

mappings from virtual to physical addresses caches?

TLB also contains
protection bits for virtual address

Fast common case: Virtual address is in TLB,
process has permission to read/write it.

17

3/28/2011

The TLB caches page table entries

Virtual Address

+—1
[V page no. | offset |

Physical and virtual
pages must be the
same size!

[LB caches
page table Physical
i aidress [Page Table frame
page address
Page Table
¥
[P page no. | offset
-—10—*

Physical Address
V=0 pages either
physical address reside on disk or
TLB have not yet been
e et
replacement). Other machines OS handles V=0

use hardware. “Page fault”

Can TLB and caching be overlapped?

Virtual Page Number I Page Offset
| Index | Byte Select
Translation
Look-Aside Cache Tags Valid Cache Data
Buffer]
(TLB)
Physical

Cache Tag q)
This works, but ... Hit -
Q. What is the downside?

A. Inflexibility. Size of cache

limited by page size. |
v pag Data out

Problems With Overlapped TLB Access

Overlapped access only works as long as the address bits used to
index into the cache do not change as the result of VA translation

This usually limits things to small caches, large page sizes, or high
n-way set associative caches if you want a large cache

Example: suppose everything the same except that the cache is
increased to 8 K bytes instead of 4 K:

—1l1—2

This bit is changed

by VA translation, but

20 12 is needed for cache
virt Eaée # dis| lookup

Solutions:
go to 8K byte page sizes;
go to 2 way set associative cache; or
SW guarantee VA[13]=PA[13]

Use virtual addresses for cache?

“Ph[ysical Addresses”

“Virtual Addresses”

1K 2 way set assoc cache
10
4 s]

0-A3T Virtual Physical AO-A31
Virtual i
Translation .
CPU C;igle Look-Aside Main Memory
DO0-D31 (B_HfrBe)r DO0-D31

[|

Only use TLB on a cache miss !
Downside: a subtle, fatal problem. What is it?

A. Synonym problem. If two address spaces share a
physical frame, data may be in cache twice.
Maintaining consistency is a nightmare.

18

3/28/2011

Advanced Cache Optimizations

Reducing hit ti * Reducing Miss Penalty
educing hit time 7. Critical word first

. Small and simple caches 8

. Merging write buffers
. Way prediction

. Trace caches e Reducing Miss Rate
9. Compiler optimizations

w N

¢ Increasing cache

bandwidth » Reducing miss penalty or
4. Pipelined caches miss rate via parallelism
5. Multibanked caches 10.Hardware prefetching
6. Nonblocking caches 11.Compiler prefetching

1. Fast Hit times via Small and Simple
Caches

¢ Index tag memory and then compare takes time
¢ = Small cache can help hit time since smaller memory takes less
time to index
— E.g., L1 caches same size for 3 generations of AMD microprocessors: K6, Athlon,
and Opteron
— Also L2 cache small enough to fit on chip with the processor avoids time penalty
of going off chip
¢ Simple = direct mapping
— Can overlap tag check with data transmission since no choice
¢ Access time estimate for 90 nm using CACTI model 4.0
— Median ratios of access time relative to the direct-mapped caches are 1.32, 1.39,
and 1.43 for 2-way, 4-way, and 8-way caches
250

200
150

100
050

Access time (ns)

16Ke 328 64KE 128KB 256KB s12K8 1m8
3/28/2011 Cache size

2. Fast Hit times via Way Prediction

* How to combine fast hit time of Direct Mapped and have the lower
conflict misses of 2-way SA cache?
¢ Way prediction: keep extra bits in cache to predict the “way,” or
block within the set, of next cache access.
— Multiplexor is set early to select desired block, only 1 tag comparison
performed that clock cycle in parallel with reading the cache data
— Miss = 1%t check other blocks for matches in next clock cycle

Hit Time

Way-Miss Hit Time Miss Penalty

¢ Accuracy = 85%

* Drawback: CPU pipeline is hard if hit takes 1 or 2 cycles
— Used for instruction caches vs. data caches

3. Fast Hit times via Trace Cache
(Pentium 4 only; and last time?)

Find more instruction level parallelism?

How avoid translation from x86 to microops?

Trace cache in Pentium 4

Dynamic traces of the executed instructions vs. static sequences of instructions as
determined by layout in memory

— Built-in branch predictor

Cache the micro-ops vs. x86 instructions

— Decode/translate from x86 to micro-ops on trace cache miss

1. = better utilize long blocks (don’t exit in middle of block, don’t enter at
label in middle of block)

1. = complicated address mapping since addresses no longer aligned to
power-of-2 multiples of word size

1. = instructions may appear multiple times in multiple dynamic traces due to
different branch outcomes

19

3/28/2011

4: Increasing Cache Bandwidth by
Pipelining

¢ Pipeline cache access to maintain bandwidth,

but higher latency

¢ Instruction cache access pipeline stages:

1: Pentium
2: Pentium Pro through Pentium llI
4: Pentium 4

- = greater penalty on mispredicted branches
- = more clock cycles between the issue of

the load and the use of the data

5. Increasing Cache Bandwidth:
Non-Blocking Caches

¢ Non-blocking cache or lockup-free cache allow data cache to

continue to supply cache hits during a miss
— requires F/E bits on registers or out-of-order execution
— requires multi-bank memories

e “hit under miss” reduces the effective miss penalty by working

during miss vs. ignoring CPU requests

e “hit under multiple miss” or “miss under miss” may further lower the

effective miss penalty by overlapping multiple misses
— Significantly increases the complexity of the cache controller as there
can be multiple outstanding memory accesses
— Requires muliple memory banks (otherwise cannot support)
— Penium Pro allows 4 outstanding memory misses

Value of Hit Under Miss for SPEC (old data)

Hit Under i Misses

14
12 E j: 0->1

1 1->2
o Woso | 9564
06 Bese | Base

waves
ora

H

mdidp2
hydro2d
alvinn

nasa?
spice2g6

Integer Floating Point
FP programs on average: AMAT= 0.68 -> 0.52 -> 0.34 -> 0.26

Int programs on average: AMAT= 0.24 ->0.20 -> 0.19 -> 0.19
8 KB Data Cache, Direct Mapped, 32B block, 16 cycle miss, SPEC 92

“Hit under n Misses”

6: Increasing Cache Bandwidth via
Multiple Banks

¢ Rather than treat the cache as a single monolithic
block, divide into independent banks that can support
simultaneous accesses
— E.g.,T1 (“Niagara”) L2 has 4 banks
¢ Banking works best when accesses naturally spread
themselves across banks = mapping of addresses to
banks affects behavior of memory system
¢ Simple mapping that works well is “sequential
interleaving”
— Spread block addresses sequentially across banks

— E,g, if there 4 banks, Bank 0 has all blocks whose address
modulo 4 is 0; bank 1 has all blocks whose address modulo
4is1; ...

20

3/28/2011

7. Reduce Miss Penalty:
Early Restart and Critical Word First

¢ Don’t wait for full block before restarting CPU

e Early restart—As soon as the requested word of the block
arrives, send it to the CPU and let the CPU continue
execution
— Spatial locality = tend to want next sequential word, so not clear

size of benefit of just early restart

e Critical Word First—Request the missed word first from
memory and send it to the CPU as soon as it arrives; let the
CPU continue execution while filling the rest of the words in
the block

— Long blocks more popular today = Critical Word 15t Widely used

| | | | block

8. Merging Write Buffer to
Reduce Miss Penalty

Write buffer to allow processor to continue
while waiting to write to memory

If buffer contains modified blocks, the addresses
can be checked to see if address of new data
matches the address of a valid write buffer entry

If so, new data are combined with that entry

Increases block size of write for write-through
cache of writes to sequential words, bytes since
multiword writes more efficient to memory

The Sun T1 (Niagara) processor, among many
others, uses write merging

9. Reducing Misses by Compiler

Optimizations
¢ McFarling [1989] reduced caches misses by 75%
on 8KB direct mapped cache, 4 byte blocks in software

¢ Instructions

— Reorder procedures in memory so as to reduce conflict misses

— Profiling to look at conflicts(using tools they developed)
¢ Data

— Merging Arrays: improve spatial locality by single array of compound

elements vs. 2 arrays

— Loop Interchange: change nesting of loops to access data in order stored in
memory

— Loop Fusion: Combine 2 independent loops that have same looping and
some variables overlap

— Blocking: Improve temporal locality by accessing “blocks” of data
repeatedly vs. going down whole columns or rows

Merging Arrays Example

/* Before: 2 sequential arrays */
int val[SIZE];
int key[SIZE];

/* After: 1 array of stuctures */
struct merge {

int val;

int key;

struct merge merged_array[SI1ZE];

Reducing conflicts between val & key;
improve spatial locality

21

3/28/2011

Loop Interchange Example

/* Before */
for (k = 0; k < 100; k = k+1)
for 0; j < 100; j Jj+
for (i = 0; i < 5000; i = i+1)
x[i101 = 2 * x[i107:
/* After */

for (k = 0; k < 100; k = k+1)
for (i = 0; i <5000; i = i+l)
for (j = 0; j <100; j = j+1)
x[i10] = 2 * x[11015

Sequential accesses instead of striding through
memory every 100 words; improved spatial
locality

Loop Fusion Example

/* Before */
for (i =0; i <N; i = i+l)
for G =0; j < N; j = j+1)
a[ilil = /o101 * clillbils
for (i = 0; i <N; i = i+l)
for G = 0; J <N; j = j+1)
d0il0] = afilfal + chiliils

/* After */
for (i = 0; i <N; i = i+l)
for G =0; j < N; j = j+1)
afi = 1/b[i10i1 * clilli
dlil0i] = alilfj] + c[illil:3

2 misses per access to a & C vs. one miss per
access; improve spatial locality

Blocking Example

/* Before */
for (i = 0;

i <N;
for G =0;]

A
Z -
-l

for (k = 0; k < N; k = k+1){
r = r + y[i1[KI*z[K1L[i1:3};
}>_<[i][j] =r;

s —
. S j = j+1)
r=0;

* Two Inner Loops:
— Read all NxN elements of z[]

-

— Read N elements of 1 row of y[] repeatedly
— Write N elements of 1 row of x[] 1
¢ Capacity Misses a function of N & Cache Size:
— 2N3+ N2 => (assuming no conflict; otherwise ...)
¢ |dea: compute on BxB submatrix that fits

3/28/2011

Blocking Example

/* After */
for (JJ =05 jj < N; JJ = ji+B)
for (kk = 0; kk < N; kk = kk+B)
for (i = 0; i < N; i = i+l)
for (0 = ji; J < min(j+B-1,N); j = j+1)
{r = 0;
for (k = kk; k < min(kk+B-1,N); k = k+1) {
r = r + y[il[KI*z[K1[i1:};
x[i101 = x[i10o] + r;
e B called Blocking Factor
¢ Capacity Misses from 2N3 + N2 to 2N3/B +N?
e Conflict Misses Too?

22

3/28/2011

Reducing Conflict Misses by Blocking

0.1 T
005 + Direct Mapped Cache
Fully Associative Cache
0
0 50 100 150

Blocking Factor

¢ Conflict misses in caches not FA vs. Blocking size

— Lam et al [1991] a blocking factor of 24 had a fifth the misses vs.
48 despite both fit in cache

Summary of Compiler Optimizations to
Reduce Cache Misses (by hand)

vpenta (nasa7)
gmty (nasa7)
tomcatv

btrix (nasa7)

mxm (nasa7)

spice
cholesky
(nasa?)
compress
1 15 2 25 3
Performance Improvement
[| merged [| loop | loop fusion O blocking
arrays interchange

10. Reducing Misses by Hardware

Prefetching of Instructions & Data
¢ Prefetching relies on having extra memory bandwidth that
can be used without penalty

¢ Instruction Prefetching
— Typically, CPU fetches 2 blocks on a miss: the requested block and the next consecutive
block.
— Requested block is placed in instruction cache when it returns, and prefetched block is
placed into instruction stream buffer
¢ Data Prefetching
— Pentium 4 can prefetch data into L2 cache from up to 8 streams from 8 different 4 KB
pages
— Prefetching invoked if 2 successive L2 cache misses to a page,
if distance between those cache blocks is < 256 bytes

5

g 220 -

g 200

2 120

= 1eo 145 La 140

8 132 1

& Ta e 118 120 121 126 129

finlm mmm AN

5

o K & & ¢ & & S N S

g & &S & & &

SPECint2000 SPECip2000

11. Reducing Misses by
Software Prefetching Data

¢ Data Prefetch
— Load data into register (HP PA-RISC loads)

— Cache Prefetch: load into cache
(MIPS IV, PowerPC, SPARC v. 9)

— Special prefetching instructions cannot cause faults;
a form of speculative execution

¢ Issuing Prefetch Instructions takes time
— Is cost of prefetch issues < savings in reduced misses?
— Higher superscalar reduces difficulty of issue bandwidth

23

