3/22/2011

Limits to ILP

¢ Conflicting studies of amount

— Benchmarks (vectorized Fortran FP vs. integer C programs)

. . — Hardware sophistication
lelts to ILP’ — Compiler sophistication
Thread-level Parallelism » How much ILP is available using existing

mechanisms with increasing HW budgets?
* Do we need to new HW/SW mechanisms to keep on

55:132/22€:160 processor performance curve?
Spring 2011
11
Limits to ILP Limits to ILP HW Model comparison
Assumptions for ideal/perfect machine to start: Model Current State
1. Register renaming — infinite virtual registers of the art
=> all register WAW & WAR hazards are avoided Instructions Issued | Infinite Approx. 4
2. Branch prediction — perfect; no mispredictions per clock
’ o) ’) Instruction Window | Infinite 200
3. Jump prediction — all jumps perfectly predicted Size
(returns, case statements) Renaming Infinite 48 integer +
2 & 3 = no control dependencies; perfect speculation Registers 40 FI. Pt.
& an unbounded buffer of instructions available Branch Prediction | Perfect ﬁjﬁ;‘;ggf’ction
4. Memory-address alias analysis — addresses known & (Tournament
a load can be moved before a store provided addresses Branch Predictor)
not equal; 1&4 eliminates all but RAW Cache Perfect 64K, 32KD, 1.92MB
. . L2,36 MB L3
Also: perfect caches; 1 cycle latency for all instructions (FP -
% /. L . . . | Memory Alias Perfect ??
,/); unlimited instructions issued/clock cycle; Analysis

2011 3 3/22/2011

3/22/2011

Upper Limit to ILP: Ideal Machine

(Figure 3.1)
160 ¢ 150.1
ol FP: 75- 150
120 | Integer: 18 - 60 118.7

» o ® O
©o o o o

Instruction Issues per cycle

N
o

=}

gcc espresso li fpppp doducd tomcatv

Programs
3/22/2011 5

More Realistic HW: Window Impact

Figure 3.2

Change from Infinite window

2048, 512, 128, 32 FP:9-150
160 — 150~ — — —

1 - — -

Integer: 8 - 63

Instructions Per Aock
@
o
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

gcc espresso li fpppp doduc tomcatv

@ Infinite @ 2048 m 512 0 128 m 32

More Realistic HW: Branch Impact
e FP: 15 -45 ws

Change from Infinite window 9

to examine to 2048 and

50 maximum issue of 64

instructions per clock cycle

Integer: 6 - 12

Instruction issues per cycle
g

espresso i foppp doducd tomeaty
Program

mPerfect MSelective predictor _ Standard 2-bit_DStatic _mNone,

More Realistic HW:
Renaming Register Impact (N int + N fp)

Figure 3.5

60 Change 2048 instr i FP: 11 - 45
window, 64 instr issue,
50 8K 2 level Prediction

Integer: 5 - 15

ARG s por e
"
3

espresso ii foppp doducd tomeatv
Program

Binfinite 8256 W128 064 32 BNone
3/22/2011 8

3/22/2011

More Realistic HW:
Memory Address Alias Impact

Figure 3.6

49 a9

s

Change 2048 instr window
64 instr issue, 8K 2 level

»

S0 Prediction, 256 renaming FP:4-45
55 registers (Fortran,

no heap)

tion issues
Ssueg,
o 3

R
5

Integer: 4 -9

struc

g espresso i foppp Goduod tomeaty

Program

W perfect B Global/stack Perfect I Inspection [None

Realistic HW: Window Impact

(Figure 3.7)

&0 Perfect disambiguation (HW), 56
1K Selective Prediction, 16 s
entry return, 64 registers, iss
as many as window

sues pgr cycle,
s 3
t

s
H

Integer: 6 - 12

S

Instguction

1515
1

121211,

s

gc expresso I toppp doducd tomcaty

Program

W infinite W2s6 W12 Oea =R [SET3 Hs M.

How to Exceed ILP Limits of this study?

¢ These are not laws of physics; just practical
limits for today, and perhaps overcome via
research

¢ Compiler and ISA advances could change
results

¢ WAR and WAW hazards through memory:
eliminated WAW and WAR hazards through
register renaming, but not in memory usage

— Can get conflicts via allocation of stack frames as a
called procedure reuses the memory addresses of
a previous frame on the stack

HW v. SW to increase ILP

* Memory disambiguation: HW best
¢ Speculation:

— HW best when dynamic branch prediction better than compile
time prediction

Exceptions easier for HW

— HW doesn’t need bookkeeping code or compensation code
Very complicated to get right

¢ Scheduling: SW can look ahead to schedule better
¢ Compiler independence: does not require new compiler,

recompilation to run well

3/22/2011

Performance beyond single thread ILP

* There can be much higher natural parallelism in
some applications
(e.g., Database or Scientific codes)

* Explicit Thread Level Parallelism or Data Level
Parallelism

¢ Thread: process with own instructions and data
— thread may be a process part of a parallel program of multiple
processes, or it may be an independent program
— Each thread has all the state (instructions, data, PC, register state,
and so on) necessary to allow it to execute
* Data Level Parallelism: Perform identical operations
on data, and lots of data

Thread Level Parallelism (TLP)

ILP exploits implicit parallel operations within a
loop or straight-line code segment

TLP explicitly represented by the use of multiple
threads of execution that are inherently parallel
Goal: Use multiple instruction streams to
improve

1. Throughput of computers that run many programs

2. Execution time of multi-threaded programs

TLP could be more cost-effective to exploit than
ILP

New Approach: Mulithreaded Execution

e Multithreading: multiple threads to share the functional
units of a processor via overlapping
— processor must duplicate independent state of each thread e.g., a separate
copy of register file, a separate PC, and for running independent programs,
a separate page table
— memory shared through the virtual memory mechanisms, which already
support multiple processes
— HW for fast thread switch; much faster than full process switch ~ 100s to
1000s of clocks
* When switch?
— Alternate instruction per thread (fine grain)

— When a thread is stalled, perhaps for a cache miss, another thread can be
executed (coarse grain)

Fine-Grained Multithreading

Switches between threads on each instruction, causing the
execution of multiple threads to be interleaved

Usually done in a round-robin fashion, skipping any stalled
threads

CPU must be able to switch threads every clock

Advantage is it can hide both short and long stalls, since
instructions from other threads executed when one thread
stalls

Disadvantage is it slows down execution of individual threads,
since a thread ready to execute without stalls will be delayed
by instructions from other threads

Used on Sun’ s Niagara (will see later)

3/22/2011

Course-Grained Multithreading

* Switches threads only on costly stalls, such as L2 cache
misses
¢ Advantages:
— Relieves need to have very fast thread-switching
— Doesn’t slow down thread, since instructions from other threads
issued only when the thread encounters a costly stall
* Disadvantage: hard to overcome throughput losses from
shorter stalls, due to pipeline start-up costs

— Since CPU issues instructions from 1 thread, when a stall occurs,
the pipeline must be emptied or frozen

— New thread must fill pipeline before instructions can complete
* Because of this start-up overhead, coarse—Frained
multithreading is better for reducing penalty of high cost
stalls, where pipeline refill << stall time
e Used in IBM AS/400

3/22/2011

For most apps, most execution units lie idle

1o e[z ME For an 8-way
w [: superscalar.
.

EES

)

3«

2 40

I.

From: Tullsen,
Eggers, and Levy,
“Simultaneous
Multithreading:
Maximizing On-chip
Parallelism, ISCA
1995.

Do both ILP and TLP?

e TLP and ILP exploit two different kinds of parallel
structure in a program

¢ Could a processor oriented at ILP to exploit TLP?

— functional units are often idle in data path designed for ILP because of
either stalls or dependences in the code

¢ Could the TLP be used as a source of independent
instructions that might keep the processor busy
during stalls?

e Could TLP be used to employ the functional units
that would otherwise lie idle when insufficient ILP
exists?

Simultaneous Multi-threading ...
One thread, 8 units Two threads, 8 units
Cycle M M FX FX FP FPBRCC Cycle M M FX FX FP FP BR CC
1 1
. I - -
: [] :
4 4
5 5
6 6
'l | :
5 I 5
9 9
M = Load/Store, FX—:leed Point, FP = Floating Point, BR = Branch, CC = Condition Codes

3/22/2011

Simultaneous Multithreading (SMT)

¢ Simultaneous multithreading (SMT): insight that
dynamically scheduled processor already has many HW
mechanisms to support multithreading
— Large set of virtual registers that can be used to hold the
register sets of independent threads
— Register renaming provides unique register identifiers, so
instructions from multiple threads can be mixed in
datapath without confusing sources and destinations across
threads
— Out-of-order completion allows the threads to execute out
of order, and get better utilization of the HW
¢ Just adding a per thread renaming table and keeping
separate PCs
— Independent commitment can be supported by logically
keeping a separate reorder buffer for each thread

Source: Micrprocessor Report, December 6, 1999
“Compag Chooses SMT for Alpha”

3/22/2011 21

Multithreaded Categories

Superscalar

RO
W00
] [

<— Time (processor cycle)

Fine-Grained ~Coarse-Grained

mEmO
N
OO0y
SO0

=000

[Thread 1
Thread 2

mEmO
moog
mEmog
EEE]

[Thread3 B Thread5
fH Thread4 [I1dle slot

Simultaneous
Multiprogessing - multthreading
ERXN EEAN]
WO
MOCH

B0

EECC] EsEO
BR[O EESL
DD: RIEREE]

Design Challenges in SMT

¢ SMT makes sense only with fine-grained implementation
* Must consider impact of fine-grained scheduling on single
thread performance?

— A preferred thread approach sacrifices neither throughput nor
single-thread performance?

— Unfortunately, with a preferred thread, }he processor is likely
to sacrifice some throughput, when preferred thread stalls

* Larger register file needed to hold multiple contexts

* Must take care to not impact clock cycle time, especially
in

— Instruction issue - more candidate instructions need to be
considered

— Instruction completjon - choosing which instructions to
commit may be challenging

¢ Must ensure that cache and TLB conflicts generated by
SMT do not degrade performance(more about this later).

3/22/2011 23

IBM Power 4

Single-threaded predecessor to
Power 5. 8 execution units in
out-of-order engine, each may
issue an instruction each cycle.

3/22/2011

e POWET 4

: L—| 155 oy
- wmﬂmmama

EX Wi X8

e, TEgiSter sets)

2 e |1

H e} fish e} B) e}

oo oo o Ho ot

Group Tommancn &G E El = pndans
EI——@

nstruchon decoda
Pt pipeing

iMP' '_I..:S] FIF] {D(]

I E:
‘2 fetch (PC),
2,njtial decodes

Power 5 data flow ...

| Branh prediction L—
 sbeclion o
Pny\m Cranch| il Foturn ’:':‘:r Bl
Ly i moues] Iﬁl
(0 [[\ O g T e o
iy Group formation > . . {ean] .
rsctin N [ingimio ¥ I S S [S B = M —|_r,...r I—ﬁ
—in J Dispaich RO o, N eempletcn
= ‘.-1 (LD (1010) T i |
5 me e e
mappat regieta: fise nﬁmrﬁm

1Fimre by o Vo 1 Thrmsed irscrerres N Thevast 1 meseuarraes

Why only 2 threads? With 4, one of the shared
resources (physical registers, cache, memory
bandwidth) would be prone to bottleneck

nauus

Power 5 thread performance ...

#Single thread mode .,
Relative priority of
each thread
controllable in
hardware.

\

Inatr&'\s percyde (PG

For balanced
operation, both

07 27 47 67 77 756 74 72 70 11

.6 36 56 66 65 63 61 01
threads run slower Bl os o3 2 T
i 14 34 44 43 41
than if they 23 33 32 phie
“owned” the R %1 modk
machine. Thread 0 priority, thread 1 priority

| = Triend 0BG @ oo 1iEG |

Changes in Power 5 to support SMT

¢ Increased associativity of L1 instruction cache and the
instruction address translation buffers

¢ Added per thread load and store queues

¢ Increased size of the L2 (1.92 vs. 1.44 MB) and L3 caches

* Added separate instruction prefetch and buffering per thread
¢ Increased the number of virtual registers from 152 to 240

* Increased the size of several issue queues

¢ The Power5 core is about 24% larger than the Power4 core
because of the addition of SMT support

3/22/2011

3/22/2011

Initial Performance of SMT
Pentium 4 Extreme SMT yields 1.01 speedup for
SPECint_rate benchmark and 1.07 for SPECfp_rate

— Pentium 4 is dual threaded SMT

— SPECRate requires that each SPEC benchmark be run
against a vendor-selected number of copies of the same
benchmark

Running on Pentium 4 each of 26 SPEC benchmarks

paired with every other (262 runs) speed-ups from

0.90 to 1.58; average was 1.20

Power 5, 8 processor server 1.23 faster for

SPECint_rate with SMT, 1.16 faster for SPECfp_rate

Power 5 running 2 copies of each app speedup

between 0.89 and 1.41

— Most gained some

— FI.Pt. apps had most cache conflicts and least gains

22/2011 29

Head to Head ILP competition
Processor Micro architecture Fetch / FU Clock | Transis | Power
Issue / Rate -tors
Execute (GHz) | Die size
Intel Speculative 3/3/4 | 7int. | 3.8 |125M | 115
Pentium dynamically 1FP 122 w
4 scheduled; deeply mm?2
Extreme pipelined; SMT
AMD Speculative 3/3/4 6int. | 2.8 | 114M | 104
Athlon 64 dynamically 3FP 115 w
FX-57 scheduled mm?2
IBM Speculative 8/4/8 | 6int. | 1.9 | 200 M | 80W
Power5 dynamically 2FP 300 | (est.)
(1CPU scheduled; SMT; mm?2
only) 2 CPU cores/chip (est.)
Intel Statically 6/5/11 | 9int. | 1.6 |592M | 130
Itanium 2 scheduled 2FP 423 w
VLIW-style mm?2
22/2011

SPEC Ratio

3500

3000

2500

2000 1

1500

1000

Performance on SPECint2000

‘n ftanium 2 @ Pentium 4 O AMD Athlon 64 O Power 5 ‘

ozip vpr gee met crafty parser eon perlomk gap vortex bzip2 twolf

14000

Performance on SPECfp2000

12000

10000

SPEC Ratio

4000 — —

2000

6000 — —

[mtanium 2 @Pentium 4 O AMD Athlon 64 T Power5 |

80001 — — — — — — — — — — — —|

3/22/2011

Normalized Performance: Efficiency

O Itanium 2 B Pentium 4 O AMD Athlon 64 0 POWER 5 P

t e
———————————————————————— aln|A|P
n t t o
i1 |h|w
,,,,,,,,,,,,,,,,,,,,,,,, ufulflfe
mim o r
Rank |2|4|n|s
7777777777777777777777 int/Trans |4]2|1(3
Fprrans |42 (13
inarea |4|2|1|3
Fparea |4|2]1|3
| - N N || nvware [4]3]1|2
Friwart |2|4|3|1

SPECINt /M SPECFP /M SPECINnt/ SPECFP/ SPECInt/ SPECFP/
Transistors Transistors ~ mm~2 mm~2 Watt Watt

No Silver Bullet for ILP

No obvious over all leader in performance

The AMD Athlon leads on SPECInt performance followed by
the Pentium 4, Itanium 2, and Power5

Itanium 2 and Power5, which perform similarly on SPECFP,
clearly dominate the Athlon and Pentium 4 on SPECFP
Itanium 2 is the most inefficient processor both for Fl. Pt.
and integer code for all but one efficiency measure
(SPECFP/Watt)

Athlon and Pentium 4 both make good use of transistors
and area in terms of efficiency,

IBM Power5 is the most effective user of energy on SPECFP
and essentially tied on SPECINT

Limits to ILP

Doubling issue rates above today’ s 3-6 instructions per
clock, say to 6 to 12 instructions, probably requires a
processor to

— issue 3 or 4 data memory accesses per cycle,

— resolve 2 or 3 branches per cycle,

— rename and access more than 20 registers per cycle, and

— fetch 12 to 24 instructions per cycle.
The complexities of implementing these capabilities is
likely to mean sacrifices in the maximum clock rate

— E.g, widest issue processor is the Itanium 2, but it also has
the slowest clock rate, despite the fact that it consumes
the most power!

Limits to ILP

¢ Most techniques for increasing performance increase power

consumption

¢ The key question is whether a technique is energy efficient: does

it increase power consumption faster than it increases
performance?

¢ Multiple issue processors techniques all are energy inefficient:

1. Issuing multiple instructions incurs some overhead in logic that
grows faster than the issue rate grows

2. Growing gap between peak issue rates and sustained performance

¢ Number of transistors switching = f(peak issue rate), and

performance = f(sustained rate),
growing gap between peak and sustained performance
= increasing energy per unit of performance

3/22/2011

Commentary

Itanium architecture (VLIW) does not represent a significant
breakthrough in scaling ILP or in avoiding the problems of complexity
and power consumption

Instead of pursuing more ILP, architects are increasingly focusing on
TLP implemented with single-chip multiprocessors (Multi-core)

Right balance of ILP and TLP is unclear today

— Perhaps right choice for server market, which can exploit more TLP, may differ
from desktop, where single-thread performance may continue to be a primary
requirement

And in conclusion ...

Limits to ILP (power efficiency, compilers,
dependencies ...) seem to limit to 3 to 6 issue for
practical options

Explicitly parallel (Data level parallelism or Thread level
parallelism) is next step to performance

Coarse grain vs. Fine grained multihreading

— Only on big stall vs. every clock cycle

Simultaneous Multithreading if fine grained
multithreading based on OOO superscalar
microarchitecture

— Instead of replicating registers, reuse rename registers
Itanium/EPIC/VLIW is not a breakthrough in ILP
Balance of ILP and TLP decided in marketplace

10

