55:132/22C:160

Spring, 2010

Superscalar Organization

HPCA
Spring 2011

EX

Integer unit

EX
FPfinteger
multiphy
EX

FP adder

EX

FPfinteger
divider

multiphy

EX

;y—’ FP adder
Sequential Sequential
Bottleneck Bottleneck

FPfinteger
divider

* Rigid pipeline stall policy

Limitations of Scalar Pipelines

e Scalar upper bound on throughput
—IPC<=1o0rCPI>=1

* Inefficient unified pipeline
— Long latency for each instruction

— One stalled instruction stalls all newer instructions
— Tomasulo’s algorithm alleviated this problem

Jon Kuhl

55:132/22C:160

Spring, 2010

Superscalar Pipeline

RD [e e]

EX %%%ﬁ‘ﬁ

T

wB

Superscalar Pipeline

e Fetch & Decode multiple instructions per cycle

e Multiple (diversified) functional units for
instruction execution

e Register renaming and out-of-order issue
(like Tomasulo’s algorithm)
BUT...

Shen, Lipasti 6

Challenge for Superscalar Pipes

¢ How to keep the pipeline operating at or near
full capacity?
— Wide instruction fetch gobbles up instructions at a
high rate
— Branches are encountered frequently
— Cost of stalls is much higher than for scalar
pipelines
¢ Branches pose the biggest challenge to
exploiting Instruction Level Parallelism (ILP)

Shen, Lipasti 7

Superscalar Pipelines—Exploiting ILP

¢ To maintain a steady stream of instructions to
feed functional units it is necessary to
maintain instruction fetch and execution
beyond branch points

 This leads to “speculative execution” of
instructions
— Accurate branch prediction is essential

— Must insure that wrong guesses don’t lead to
incorrect behavior

Shen, Lipasti 8

Jon Kuhl

55:132/22C:160

Spring, 2010

Speculation for greater ILP

¢ Greater ILP: Overcome control dependence
by hardware speculating on outcome of
branches and executing program as if
guesses were correct

— Speculation = fetch, issue, and execute instructions as if branch
predictions were always correct

— Dynamic scheduling = only fetches and issues instructions

¢ Essentially a data flow execution model:
Operations execute as soon as their
operands are available

Speculation for greater ILP

¢ 3 components of HW-based speculation:

1. Dynamic branch prediction to choose which
instructions to execute

2. Speculation to allow execution of
instructions before control dependences are
resolved
+ ability to undo effects of incorrectly speculated

sequence

3. Dynamic scheduling to deal with scheduling

of different combinations of basic blocks

Adding Speculation to Tomasulo’s Algorithm

¢ Must separate execution from instruction
completion or “commit”

¢ This additional step called instruction commit

¢ When an instruction is no longer speculative,
allow it to update the register file or memory

¢ Requires additional set of buffers to hold results
of instructions that have finished execution but
have not committed

¢ This reorder buffer (ROB) is also used to pass
results among instructions that may be
speculated

Reorder Buffer (ROB)

 In Tomasulo’ s algorithm, once an instruction writes
its result, any subsequently issued instructions will
find result in the register file

¢ With speculation, the register file is not updated until
the instruction commits

* The ROB supplies operands in interval between
completion of instruction execution and instruction
commit
— ROB is a source of operands for instructions, just as

reservation stations (RS) provide operands in Tomasulo’ s
algorithm

— ROB extends architected registers like Reservation Stations

12

Jon Kuhl

55:132/22C:160 Spring, 2010

Reorder Buffer operation

¢ Holds instructions in FIFO order, exactly as dispatched

* Eachentry in the ROB contains four fields: ¢ When instructions complete, results placed into ROB

— Supplies operands to other instruction between execution
complete & commit = more registers like RS

— Tag results with ROB buffer number instead of reservation station

Reorder Buffer Entry

1. Instruction type
¢ abranch (has no destination result), a store (has a memory address
destination), or a register operation (ALU operation or load, which has

register destinations
> b €) Instructions commit =values at head of ROB placed in registers
. Destination r
. . e Asaresult, easy to undo {
* Register number (for loads and ALU operations) or . .
speculated instructions Reorder
memory address (for stores) A . Buffer
where the instruction result should be written on mispredicted branches

or on exceptions
3. Value or on exceptions

¢ Value of instruction result until the instruction commits Commit path l l
4. Ready Res Stations Res Stations
¢ Indicates that instruction has completed execution, and the value is @E [EP Adder]
ready l
1

Tomasulo With Reorder buffer:
Four Steps of Speculative Tomasulo’ Algorithm Done?
FP Op > ROB7 Newest
1.1ssue—get instruction from FP Op Queue Queue ROBS
If reservation station and reorder buffer slot free, issue ROBS
instr & send operands & reorder buffer no. for Reorder Buffer %ﬁ
destination (this stage sometimes called “dispatch”) ROBS
2. Execution—operate on operands (EX) = DIERICORIL Egz Oldest
When both operands ready then execute; if not ready, '
watch CDB for result; when both in reser‘\‘/ation"station,
execute; checks RAW (sometimes called “issue ") RegisTer's A4
3. Write result—finish execution (WB) Memory
Write on Common Data Bus to all awaiting FUs Dest Dest from
& reorder buffer; mark reservation station available. Memory
4. Commit—update register with reorder result)551-*
When instr. at head of reorder buffer & result present, update 1 Reserv_a‘rion 1 110+R2
register with result (or store to memory) and remove instr from Stations
reorder buffer. Mispredicted branch flushes reorder buffer
(sometimes called “graduation”) +
15 10

Jon Kuhl

55:132/22C:160

Spring, 2010

Tomasulo With Reorder buffer: Tomasulo With Reorder buffer:
Done? Done?
FP Op > ROB7 Newest FP Op > ROB7 Newest
Queue ROB6 Queue ROB6
ROB5 ROB5
RQB4 RQB4
Reorder Buffer . Reorder Buffer | S e T
F1d ADDD_F10,F4,F0 | N|Ro82 | ogest F1d ADDD F10,F4,FO | N |ROBZ | ()gest
FO [D FO,10(R2) | N |rost Fo D FO,10(R2) | N |rost
Registers To Registers To
Memory Memory
e Dest from Dest Dest from
Memory Memory
Desf’)es‘r*
& Reservation 1 [10+R2] A Reservation 1 [10+R2]
Stations Stations
Tomasulo With Reorder buffer: Tomasulo With Reorder buffer:
Done? Done?
FP Op > ROB7 Newest FP Op P{--| ROB5 |ST O(R3),F4 N [ROB7 Newest
Queue FO ADDD FO,F4,F6 | N |ROBS Queue FO ADDD FO,F4,F6 | N |ROBS
F4 D F4,0(R3) N | ROB5 Fa D F4,0(R3) N | ROB5
- BNE F2,<.> N R§B4 - BNE F2,<.> N k§B4
Reor‘der BUffer‘ F2 DIVD F2,F10,F6 | N | ROB3 Reor‘der‘ Buffer‘ F2 DIVD F2,F10,F6 | N | ROB3
F1d ADDD F10,F4,FO | N | rOB2 Oldest F1d ADDD F10,F4,FO [N | rROB2 Oldest
Fo D F0,10(R2) | N | ros FO D F0,10(R2) | N | roet
Registers To Registers To
Memory Memory
Dest Dest from Dest Dest from
Memory Memory
Dest Dest
& Reservation 1 [10+R2) A Reservation 1 [10+R2|
Stations 5| O+R3 Stations 5| O+R3

Jon Kuhl

55:132/22C:160

Spring, 2010

Tomasulo With Reorder buffer:

Tomasulo With Reorder buffer:

Done? Done?
FP Op P{--| M[10] | ST O(R3),F4 Y [ROB7 Newest FP Op P --| M[10] [ST O(R3),F4 Y |ROB7 Newest
Queue FO ADDD FO,F4,F6 | N |ROB6 Queue FO[<val2>[ADDD FO,F4,F6 [Ex|ROB6
F4| M[10] |LD F4,0(R3) Y | roBs F4[M[10] |LD F4,0(R3) Y | roBS
- BNE F2,<.> N | RgB4 - BNE F2,<.> N | RgB4
Reorder Buffer F2 DIVD F2,F10,F6 [N R€B3 Reorder Buffer F2 DIVD F2,F10,F6 | N a%aa
F1q ADDD_F10,F4,F0 | N|Ro82 | ogest F1d ADDD F10,F4.FO [N |RoB2 | (|gest
FO LD FO,10(R2) | N |ros! FO LD FO,10(R2) | N |ros:
Registers To Registers To
Memory Memory
e Dest from Dest Dest from
Memory Memory
Desf’)es‘r*
& Reservation 1 [10+R2] A Reservation 1 [10+R2]
Stations Stations
Tomasulo With Reorder buffer: Speculation: Register Renaming vs. ROB
Done?
FP Op = T B BRI O R Y1ROF Newest o AItern.atlve tp ROB.IS a larger thsmal set of registers
Queue FO[<val2> | ADDD FO,F4.F6 |Ex|ROB6 combined with register renaming
M[Ted [LD F4,0(R3) Y | ROBS — Extended registers replace function of both ROB and reservation
- WE F2,<.> N | RQB4 stations
Reorder Buffér F2 DIWQ F2,F10,F6 [N R@BS . X
F1d ADDD 10,7470 | N | ro82 | o1dest ¢ Instruction issue maps names of architectural
What about memory [FO LD FO,IQ(R2) |N |roet registers to physical register numbers in extended
272 .
hazards??: register set
Reglsfer‘s — Onissue, allocates a new unused register for the destination

Dest

Stations

& Reservation

(which avoids WAW and WAR hazards)

— Speculation recovery easy because a physical register holding an
instruction destination does not become the architectural register until
the instruction commits

* Most Out-of-Order processors today use extended
registers with renaming

Jon Kuhl

55:132/22C:160

Spring, 2010

Available T register Queue

© N o U WN PO

63

Rename Table

6

39

6

14

22

28

Register Renaming Example

11: MULD F5,F0,F2
12: ADDD F9,F5,F4
13: ADDD F5,F5,F2
14: DIVD F2,F9,F0

Architected Regs: FO, F1, F2,..

Rename Regs: TO, T1, T2, ...

Register Renaming Example

Available T register Queue
.[21f10(8

Dst=F
11— Srcl=F0
Src2=F2

© ® N o g A

63

Rename Table

6

39

6

14

228

28

11: MULD F5,F0,F2
12: ADDD F9,F5,F4
13: ADDD F5,F5,F2
14: DIVD F2,F9,FO

Dst=T8
Srcl=T6
Src2=T39

F5 renamed
To T8

Architected Regs: FO, F1, F2,..
Rename Regs: TO, T1, T2, ...

Available T register Queue

63

Rename Table

6

39

6

14

8

\ 28

Y10

Register Renaming Example

11: MULD F5,F0,F2
12: ADDD F9,F5,F4
13: ADDD F5,F5,F2
14: DIVD F2,F9,FO

SDstlz__‘II:éO F9 renamed
= ToT10

Src2=T14

Architected Regs: FO, F1, F2,..

Rename Regs: TO, T1, T2, ...

Register Renaming Example

Available T register Queue

63

Rename Table

6

11: MULD F5,F0,F2
12: ADDD F9,F5,F4
13: ADDD F5,F5,F2
14: DIVD F2,F9,FO

SDStlz__-::gl F5 renamed
rel="e ToT21—

Sre2=T39 New reuse
Cycle for F5

Architected Regs: FO, F1, F2,..
Rename Regs: TO, T1, T2, ...

Jon Kuhl

55:132/22C:160

Spring, 2010

Register Renaming Notes

* Number of Rename Registers (T-Regs) can be larger
than number of architected registers
— This can alleviate the resource bottleneck for ISAs with
small number of architected registers—e.g. Intel 1A-32
* |n some cases a result never needs to be written
back to the architected register—like Tomasulo’s
algorithm
* AT-Regis returned to Available T-reg Queue when
the instruction that targets it commits

Superscalar Pipeline Stages

[T [T T 1] Dispatch Buffer
7

Dispatch

[T T T [T] Issuing Buffer
T
T
Completion Buffer
T
1]

Instruction Buffer

LT T T Store Bufer

Necessity of Instruction Dispatch

Jon Kuhl

Dispatch
(issue)

Centralized Reservation Station

| | | | | Centralized reservation
station (dispatch buffer)

Execute

1I1II 1
I

1
|

Completion buffer

55:132/22C:160

Distributed Reservation Station

4

Dispatch [TTTT LT T T T Joispachbuer

L Distributed

!

I ll I I Il I I I{esﬁrvz\lion
L L stations
!

Issue L

I
—

I I IComp]elionhuffer

Finish ;

Complete

Spring, 2010

A Dynamic Superscalar Processor

J S Reservation
stations

Outof order

L T T T T rortcomnciontore

In order

Store buffer

Avoiding Memory Hazards

WAW and WAR hazards through memory are eliminated with
speculation because actual updating of memory occurs in
order, when a store is at head of the ROB, and hence, no
earlier loads or stores can still be pending

RAW hazards through memory are maintained by two
restrictions:

1. not allowing a load to initiate the second step of its execution if any

active ROB entry occupied by a store has a Destination field that
matches the value of the A field of the load, and

2. maintaining the program order for the computation of an effective
address of a load with respect to all earlier stores.

these restrictions ensure that any load that accesses a

memory location written to by an earlier store cannot

perform the memory access until the store has written the

data

Memory Data Dependences

* “Memory Aliasing” = Two memory references involving the same memory
location (collision of two memory addresses).

* “Memory Disambiguation” = Determining whether two memory
references will alias or not (whether there is a dependence or not).

« Memory Dependency Detection:

— Must compute effective addresses of both memory references

— Effective addresses can depend on run-time data and other instructions

— Comparison of addresses require much wider comparators
Example code:

(1) STORE %

(2 ADD
(3 LOAD w
4) LOAD X
(5) LOAD v
(6) ADD

() STORE W

Jon Kuhl

55:132/22C:160

Spring, 2010

Conservative Approach: Maintain Total
Order of Loads and Stores

» Keep all loads and stores totally in order with respect to

each other.

« However, loads and stores can execute out of order with

respect to other types of instructions.

» Consequently, stores are held for all previous

instructions, and loads are held for stores.
— l.e. stores performed at commit point

— Sufficient to prevent wrong branch path stores since all prior
branches now resolved

[llustration of Total Order

Decoder
Store v Add oad w] toad x | Cycle 1
[Toad v [Add [Store W]] Cycle 2
Cycle 1 Cycle 2 Cycle 3 Cycle 4
Store W] data_} Sorew | data_}
Load/Sore Toaqv Toan
Reservation oaux [Toaax]| roanx]|
oaaw [Toaaw]| [Toaaw]|
Station Sore v daE Sore v Torev | da@

NN

cache ~cathe
addr ;"a't": Ry I

Cycle 5 Cycle 6 Cycle7 Cycle 8
Ea
Toad v Tore W]_data
X

Toav Torew] datE
oad w oad X Store w |_data
- ‘

] B =] D]

Store v Load w Load x Load v

ISSUING LOADS AND STORES WITH TOTAL ORDERING

Load Bypassing

« Loads can be allowed to bypass stores (if no aliasing).
« Two separate reservation stations and address

generation units are employed for loads and stores.

« Store addresses still need to be computed before loads

can be issued to allow checking for load dependences. If
dependence cannot be checked, e.g. store address
cannot be determined, then all subsequent loads are
held until address is valid (conservative).

« Stores are kept in ROB until all previous instructions

complete; and kept in the store buffer until gaining
access to cache port.

[llustration of Load Bypassing

Cycle Cycle 3

[orev
[Soew
Reservation
Station toTey | dat

1]

rorew] data

Cycle 4

¥
Loadx | relehSed Store v dLa

LOAD BYPASSING OF STORES

Jon Kuhl

10

55:132/22C:160

Spring, 2010

Load Forwarding

 If a subsequent load has a dependence on a store
still in the store buffer, it need not wait till the
store is issued to the data cache.

¢ The load can be directly satisfied from the store
buffer if the address is valid and the data is
available in the store buffer.

¢ This avoids the latency of accessing the data cache.

a1

Illustration of Load Forwarding

Decoder
Store v

[SOE V] Adq_[Toau Wy Loau X] Cycle 1
[Co0 V] Adq [Sore W[Cycle 2

Cycle 1 Cycle Cycle 3
Store

Reservation

SIOTeW] ara

calh Il
cache” addr write data
Cycle 4 Cycle 6
l
l’smmala—|
—r' !
Store v data

LOAD BYPASSING OF STORES WITH FORWARDING

FO, a
R4, Rx, #512

F2, O(RX)
F2,F0, F2
F4, O(Ry)
F4,F2,F4
F4, O(Ry)
Rx, Rx, #8
Ry, Ry, #8
R20, R4, Rx
R20, loop

The DAXPY Example

Y(i) = A * X(i) + Y(i)

; last address Q
 load X(i) :
e @

;load Y(i)

L ARX(0) + (i)
; store into Y(i)

;inc.index to X
;inc.index to Y

; compute bound
; check if done

Performance Gains From Weak Ordering

Load Bypassing: Load Forwarding:

CODE: CODE: D %
q0Y Reservation [g gcz\plencn
______ uffer
STX J [stx Station S‘T X |
D Y ‘ ; b X |
‘ Load/Store I
Unit | Store
— ST X Buffer

Performance gain:

Load bypassing: 11%-19%increase over total ordering

Load forwarding: 1%-4% increase over load bypassing

Jon Kuhl

11

55:132/22C:160 Spring, 2010

Optimizing Load/Store Disambiguation Speculative Disambiguation
¢ Non-speculative load/store disambiguation * Whatif aliases are rare?
1. Loads wait for addresses of all prior stores L. Loads don’t wait for addresses of

all prior stores

2. Full address comparison 2. Full address comparison of stores

3. Bypass if no match, forward if match that are ready
. (1) can limit performance' 3. Bypass if no match, forward if
' match
4. Check all store addresses when
load r5,MEM([r3] <« cache miss they Comm't_ _ T
. — No matching loads — speculation
store r7, MEM[r5] < RAW for address generation, stalled was correct

— Matching unbypassed load —
incorrect speculation

load r8, MEM([r9] <« independent load stalled 5

Replay starting from incorrect
load
Use of Prediction Load/Store Disambiguation Discussion
* If aliases are rare: static prediction ¢ RISCISA:
— Predict no alias every time — Many registers, most variables allocated to registers

— Aliases are rare
— Most important to not delay loads (bypass)
— Alias predictor may/may not be necessary

¢ Why even implement forwarding? PowerPC 620 doesn’t
— Pay misprediction penalty rarely

* If aliases are more frequent: dynamic prediction o CISC ISA:
— Use PHT-like history table for loads — Few registers, many operands from memory
« If alias predicted: delay load — Aliases much more common, forwarding necessary
« If aliased pair predicted: forward from store to load — Incorrect load speculation should be avoided
— More difficult to predict pair [store sets, Alpha 21264] — If load speculation allowed, predictor probably necessary
— Pay misprediction penalty rarely ¢ Address translation:
¢ Memory cloaking [MOShOVOS, Sohi] — Can’t use virtual address (must use physical)

— Wait till after TLB lookup is done

— Predict load/store pair
Directl + dat ister to load t t st — Or, use subset of untranslated bits (page offset)
— Directly copy store data register to load target register + Safe for proving inequality (bypassing OK)

— Reduce data transfer latency to absolute minimum « Not sufficient for showing equality (forwarding not OK)

Jon Kuhl 12

55:132/22C:160 Spring, 2010

Exceptions and Interrupts

« IBM 360/91 invented “imprecise interrupts”
— Computer stopped at this PC; its likely close to this address
— Not so popular with programmers
¢ Technique for both precise interrupts/exceptions and
speculation: in-order completion and in-order commit . .
— If we speculate and are wrong, need to back up and restart A QUle Case StUdy—lntel Pentium 4

execution to point at which we predicted incorrectly
— This is exactly same as need to do with precise exceptions
¢ Exceptions are handled by not recognizing the exception
until instruction that caused it is ready to commit in ROB
* If a speculated instruction raises an
exception, the exception is recorded in the
ROB

— This is why reorder buffers in all new processors

Pentium 4 Architecture

Pantiumir] 4 Processor Architectural Block Diagram

Pentium 4 Pipeline

b e A il LB e B e B e 00 100 el Ll 1 e e 5y L B e 7 L 8 19,20,

TCHNxtlP | TCFetch Drive Alloc Rename Que Sch| Sch 'Sch Disp Disp RF | RF | Ex | Figs BrCK Drive

Trnger Scheshuler [Fluating Poine Schadulorsg]
[Fastint [Fastiof [_Memcey |

T
'._ ||l|u-|n¢ Point Register rl-lb
3

Jon Kuhl 13

55:132/22C:160

Spring, 2010

Instruction Decoder

Dynamic Branch
Predictor: 4096 entries

I

Micro Code
ROM /
Micro

Instruction

Sequencer

Execution Trace Cache
12,000 yOPs

Pentium 4 Dispatch/Execution

Allocate Resources / Rename Registers
¥
Integer/Floating Point HDP Queue J [Memory uOP Queue
I Il

I 1§ L Integer Schedulers 110 pating Point Schedulers
Iemor |_FPGen [FPMem |
v

Slow Int Fast Int Fast Int
t |Floating Point Register FiIoI
1

| Integer Register File
1 Bypass Netvork

Complex
Inst.

A At

2xAGUY |2xAGU

Store Load
ddress] Address|

Lnit

Unit

FP Store § |FMul|SSEF
FP Move] FAdd[SSEZ]

=

VX,

Pentium 4 Branch Prediction Accuracy

geip

vpr

[F

mei
crafty
wupwise
swim
magrid
applu

mesa

Branch per 1000

3007 D . P rmare

Jon Kuhl

14

55:132/22C:160

Spring, 2010

Pentium 4 (Mis)speculation

crafty

/

45%
Ouch!!!

Wupwise

swim
mgrid
applu

mesa

0.0000 0.0500 01000 01500 02000 02500 03000 03500 04000 0.4500
Misspeculation fraction (micro-ops)

3007 D . 4P rmara

Pentium 4 CPI

zip

crafty
wupwise
swim
mgrid
applu

mesa

0.0000 0.0500 0.1000 0.1500 0.2000 0.2500 0.3000 0.3500 0.4000 0.4500
cPl

3007 Do . g s

Perspective

¢ Goal of multiple-issue architectures is to improve
performance without affecting uniprocessor
programming model

* Exploiting ILP is conceptually simple, but design
problems are very complex in practice

¢ Processors of last decade (Pentium 4, IBM Power 5,
AMD Opteron) have the same basic structure and
similar sustained issue rates (3 to 4 instructions per
clock) as the 1st dynamically scheduled, multiple-
issue processors announced in 1995

* Peak v. delivered performance gap increasing

An Attempt to Think Outside the Box:
Very Large Instruction Word VLIW)

» Each “instruction” has explicit coding for multiple operations
— In 1A-64, grouping called a “packet”

— In Transmeta, grouping called a “molecule” (with
“atoms” as ops)
* Tradeoff instruction space for simple decoding
— The long instruction word has room for many operations

— By definition, all the operations the compiler puts in the long instruction
word are independent => execute in parallel

— E.g., 2 integer operations, 2 FP ops, 2 Memory refs, 1 branch
¢ 16 to 24 bits per field => 7*16 or 112 bits to 7*24 or 168
bits wide
— Need compiling technique that schedules across several branches

Jon Kuhl

15

55:132/22C:160

Spring, 2010

|A-64 Architecture

« 128 general-purpose registers

« 128 floating-point registers

 Arbitrary number of functional units

¢ Arbitrary latencies on the functional units

* Arbitrary number of memory ports

 Arbitrary implementation of the memory hierarchy

Needs retargetable compiler and
recompilation to achieve maximum
program performance on different |1A-64
implementations

IA-64 Instruction Format
+ |1A-64 “Bundle”
— Total of 128 bits
— Contains three 1A-64 instructions (aka syllables)

— Template bits in each bundle specify dependencies both within
a bundle as well as between sequential bundles

— A collection of independent bundles forms a “group
inst; inst, insty temp
* |A-64 Instruction
— Fixed-length 40 bits long
— Contains three 7-bit register specifiers

— Contains a 6-bit field for specifying one of the 64
one-bit predicate registers

SPECRatio

Performance Itanium 2 versus traditional
Superscalar

000
8000 | I
W tanium 2
7000 | Pentium 4
B AMD Athion B4
Powerk

0
wupwise galgel mesa swim sixirack [geip cralty gap twoll

Jon Kuhl

16

