2/28/2011

Diversified Pipelines—The Path
Toward Superscalar Processors

HPCA, Spring 2011

Limitations of Our Simple 5-stage Pipeline

e Assumes single cycle EX stage for all
instructions
 This is not feasible for

— Complex integer operations
e Multiply
* Divide
« Shift (possibly)

— Floating Point Operations

Shen, Lipasti 2

A Naive Extension of the 5 Stage Pipeline

EX

Alnteger unil

Y
[\
f - -y
EX N

\
FPintagor

—— T
‘ IF ‘ D

. Y
] MEM we
~ EX |
\\‘ P I

Multicycle ALU Operations

¢ Latency: # of intervening cycles between the
instruction that produced a result and a subsequent
instruction that uses it.

¢ |nitiation Interval: # of cycles between two

instructions that utilize the same functional unit.

1

Integer ALU 0

FP Add 3 1
Int Multiply 6 1
FP Multiply 6 1
FP Divide 24 25

2/28/2011

Multicycle ALU Operations

e Latency: # of intervening cycles between the
instruction that produced a result and a subsequent
instruction that uses it.

e Initiation Interval: # of cycles between two
instructions that utilize the same functional unit.

Integer ALU 0 1
FP Add 3 1 4 stage pipelined adder
Int Multiply 6 1 o

B 7 stage pipelined mult.
FP Multiply 6 1
FP Divide 24 25

24 cycle divider
(non-pipelined)

Diversified Pipeline

et it

Ex

\\\

FRintager muticly \
Ms | Ma v 5
- ~—

’!@ [_‘*

/
/ 3 w.—w |
] |

3007 D . 4P rmara

=

Problems with Diversified Pipeline
¢ Many more RAW hazard opportunities due to longer
fp instruction execution times
¢ New Structural Hazards:

— Divide instructions at distance < 25 (Due to non-
pipelined Divide Unit.

— Multiple Register Writes/Cycle due to variable
instruction execution times

¢ Qut-of-order instruction completion—Why is this a
problem?

¢ WAW Hazards are possible (WAR not possible. Why?)

Structural Hazard--FP Register Write Port

1 2 3 4 5 7 8 9 10 1
MUL.D IF ID M1 M2 | M3 M4 | M5 Mé M7 | MEM | WB
1+1 IF D
1+2 IF
ADD.D IF D Al A2 A3 A4 MEM | WB
1+4 IF
1+5 IF
LOAD.D IF D EX MEM | WB

2/28/2011

Structural Hazard--FP Register Write Port Diversified Pipeline--WAW Hazard
1 2 3 4 5 6 7 8 9 10 n 1 2 3 4 5 6 7 8 9 10 11
MUL.D IF 1D M1 M2 M3 M4 M5 M6 M7 MEM ﬁ\IB\ MUL.D FO,F2,F4 IF ID M1 M2 M3 M4 M5 M6 M7 MEM | WB
141 e [o [|] e . . / \ 1+1 F | D
1+2 IF . 142 IF
ADD.D IF | ID | AL | A2 | A3 | A4 MEM | WB 143 IF
1+4 IF 1+4 IF
145 IF LOAD.D F0,10(R3) IF | ID | EX | MEM W8
LOAD.D IF ID EX MEM || wB
Three FP Register
Writes in Same Cycle
Diversified Pipeline--WAW Hazard Diversified pipeline—Out of Order Completion
1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11
IF 1D M1 M2 M3 M4 M5 M6 M7 MEM | WB DIV.D FO,F2,F4 IF D D1 D2 D3 D4 D5 D6 D7 D8 D9
IF D f ADD.D F2,F10,F8 IF ID EX Al A2 A3 A4 MEM WB
IF G LOAD.D F4,10(R3) IF ID EX MEM | WB
Fl o -]] -] - j Note that both the ADD and LOAD complete before the DIV
IF 1D EX MEM WB

Suppose a hardware exception occurs during the DIV, after stage 8.
What is the PC address of the exception?

Also note that the ADD and LOAD have overwritten the source

operands for the DIV so there is no way to restore the state before the
DIV

2/28/2011

Diversified Pipeline Performance

Diversified Pipeline—Stalls per Instruction

! 1 = 0.8
doduc 3.7 iS4 [] doduc
[20 | Bl aisciania W FP result stalls
& - O FP compare stalls
-'il.\ o 052 B Branch/ioad stalls
i h ik ear B FP structural
00 —
-.."'?"5
g MdrO2d H a2 E;\::-Eacrks hydro2d
el -1 ; :n midijdp 0.5
' a5
suZtor 1.6 suZcor
186
06
00 100 150 200 250 000 010 020 030 040 050 060 070 080 090 1.00
(um_l'l::t:!-rn-l.:‘.\l\ 13 Number of stalls
Diversified Pipeline—Can the Compiler Help? Can the Compiler Help?
» Consider this code to add a scalar to a vector: Loop: L.D FO0,0(R1) ;FO=vector element

for (i=1000; i>0;
x[i] = x[i] + s;
+ First translate into MIPS code:

— -To simplify, assume 8 is lowest address

i=i-1)

Loop: L.D FO OSRl) sFO= vector element
add scalar from F2
ERlz F4 ‘store result
‘decrement pointer 8B (DW)
R1, Loop ‘branch R1l=zero

DADDU 1

15

ADD.D F4,F0,F2;add scalar from F2

S.D O(R1),F4 ;store result

DADDUI R1,R1,-8;decrement pointer 8B (DW)
BNEZ R1,Loop ;branch Rl!=zero

Assume the following pipeline latencies:
* Ignore delayed branch in these examples

Instruction Instruction stalls between
producing result using result in cycles

FP ADD Another FP ALU op 3

FP ADD Store double 2

Load double FP ALU op 1

Load double Store double 0

Integer op Integer op 0

16

2/28/2011

Stalls (NOPs) needed to account for Pipeline Latencies

1 Loop: L.D FO,0(R1)
2 stall

3 ADD.D F4,F0,F2
4 stall

5 stall

6 S.D O(R1),F4
7 DADDUI R1,R1,-8
8 stall

9 BNEZ R1,Loop

Instruction Instruction

producing result
FP ALU op
FP ALU op

Load double FP ALU op

using result
Another FP ALU op 3
Store double 2

;FO=vector element

;add scalar in F2

;store result

;decrement pointer 8B (DW)
;assumes can’t forward to branch
;branch R1!=zero

Latency in
clock cycles

1

¢ 9clock cycles per loop iteration

* Can the compiler reorganize the code to minimize stalls? 17

Reorganized Code to Reduce Stalls

Swap DADDUI and S.D by changing address of S.D:

1 Loop: L.D FO,0(R1)

2 DADDUI R1,R1,-8

ADD.D F4,F0,F2

stall

stall

S.D 8(R1),F4 ;altered offset when move DADUI
BNEZ R1,Loop

N o b w

Instruction Instruction Latency in
producing result using result clock cycles
FP ALU op Another FP ALU op 3

FP ALU op Store double 2

Load double FP ALU op 1

7 clock cycles, but just 3 for execution (L.D, ADD.D,S.D), 4 for loop overhead;
Can we(the compiler) do better?

18

Loop Unrolling to Improve Performance

1 Loop:L.D Fo,o(Rl)/l cycle stall

3 ADD.D F4,F0,F2 2 cycles stall

6 S.D 0(R1),F4 ;drop DADDUI & BNEZ
7 L.D F6,-8(R1)

9 ADD.D F8,F6,F2

12 S.D -8(R1),F8 ;drop DADDUI & BNEZ
13 L.D F10,-16(R1)

15 ADD.D_F12,Fi0,F2

18 S.D -16(R1),F12 ;drop ADDUI & BNEZ
19 L.D F14,-24(R1)

21 ADD.D F16,F14,F2

24 S.D -24(R1),F16

25 DADDUI R1,R1,#-32 ;alter to 4*8

26 BNEZ R1,LOOP

Loop Unrolling with Code Rearrangement

-
o
o

o

FO,0(R1)
F6,-8(R1)
F10,-16(R1)
F14,-24(R1)
F4,F0,F2
F8,F6,F2
F12,F10,F2
F16,F14,F2
0(R1),F4
-8(R1),F8
-16(R1),F12
12 DSUBUI R1,R1,#32
8(R1),F16 ; 8-32 = -24
14 BNEZ R1,LOOP

14 clock cycles, or 3.5 per iteration

©CO~NOOUOD_WNE
jvlvivle)
o000 O0D000O0O0O

wounrErrrrrrrr

27 clock cycles, or 6.75 per iteration
(Assumes R1 is multiple of 4)
19

20

2/28/2011

Limits to Loop Unrolling

Decrease in amount of overhead amortized with each
extra unrolling
e Amdahl’s Law

. Growth in code size

* For larger loops, concern it increases the instruction cache miss
rate

. Register pressure: potential shortfall in registers created

by aggressive unrolling and scheduling

e If not possible to allocate all live values to registers,
may lose some or all of its advantage

Loop unrolling reduces impact of branches on pipeline;

another way is branch prediction

21

Hardware-based Performance Optimization--
Dynamic Scheduling

e Dynamic scheduling - hardware rearranﬁes the
instruction execution to reduce stalls while
maintaining data flow and exception behavior
— Handles cases when dependences unknown at
compile time

— Allows the ﬂrocessor to tolerate unpredictable delays
such as cache misses, by executing other code while
waiting for the miss to resolve

— Allows code to be compiled independently of details
of a particular pipeline

— Simplifies the compiler

* Hardware speculation, a technique with
significant performance advantages, builds on
dynamic scheduling (more about'this later)

Dynamic Scheduling Example

Consider:
i: R4 <-- RO + R8

ii R2 <- RO * R4
ki R4 <— R4 + R8

I: R8 <-- R4 * R2

Dynamic Scheduling Example
Consider:
i
J:
k:
I: R8 <-- R4 * R2
RAW Hazards WAW Hazards

2/28/2011

Dynamic Scheduling—The dataflow limit

Dynamic Scheduling Example

2 @) Consider:
@ 0 Mo R4¢g- RO + R8
Reuse cycle
(3) For R4 4
o (©)) J:
@ K -
(k:
Another
~ 3 .
©) 0 ® 0 Reuse cycle . .
; For RA . R8 <- R4 * R2
(10)) L
Objective of Dynamic Scheduling is to come as close as possible of the Dataflow Limit RAW Hazards WAW Hazards
Dynamic Scheduling Example Dynamic Scheduling Example
Consider: Consider:
S Mo ¢
Reuse cycle Reuse cycle
For R4 . For R4 .
J: i ~
ok ok Rx <-- + R8
Another Reuse cycle
Reuse cycle | ForR
For“}% 2l R8 <-Rx*R2 o . R8 <- Rx * R2 ¢

RAW Hazards WAW Hazards

RAW Hazards

2/28/2011

Dynamic Scheduling

¢ Key idea: Allow instruction(s) following a stall to

proceed

DIVD FO,F2,F4
ADDD F10,FO,F8
SUBD F12,F8.F14

* Enables out-of-order execution and allows out-
of-order completion (e.g., SUBD)

e Will distinguish when an instruction begins
execution and when it completes execution;
between these times, the instruction is in
execution

* Note: Dynamic execution creates WAR and WAW
hazards and makes exceptions harder

252 506 Lec7 ILP

Dynamic Scheduling—Starting Point

¢ Split the ID pipe stage of simple 5-stage
pipeline into 2 stages:

e |ssue—Decode instructions, check for
structural hazards

e Read operands—Wait until no data
hazards, then read operands

Dynamic Scheduling: Tomasulo’s Algorithm

For IBM 360/91 (late 1960s, before caches!)

— = Long memory latency

Goal: High Performance without special compilers

Small number of floating point registers (4 in 360)
prevented interesting compiler scheduling of operations

— This led Tomasulo to try to figure out how to get more effective
registers — renaming in hardware!

Why Study 1966 Computer?

Tomasulo’s algorithm is the basis for dynamic scheduling
approach used in most modern processors

Tomasulo’s Algorithm

Control & buffers distributed with Functional Units (FU)

— FU buffers called “reservation stations”; have pending
operands

Registers in instructions replaced by values or pointers to

reservation stations(RS); called register renaming ;

— Renaming avoids WAR, WAW hazards

— More reservation stations than registers, so can do
optimizations compilers can’t

Result forwarding via a Common Data Bus that broadcasts
results to all FUs

— Avoids RAW hazards by executing an instruction only when its
operands are available

Load and Stores treated as FUs with RSs as well

Integer instructions can go past branches (predict taken),
allowing FP ops beyond basic block in FP queue

2/28/2011

’ .
Tomasulo’s Algorithm [Tomasulo, 1967] IBM 360/91 FPU
Sorage Bus ‘"5"““‘;” unt ¢ Multiple functional units (FU’s)
— Floating-point add
5 o — Floating-point multiply/divide
5 Gperand 3] * Three register files (pseudo reg-reg machine in floating-point unit)
2:.:,”:(:62‘; : Contrel (Sf;; omma o i — (4) floating-point registers (FLR)
2 onel [Regisers (LR) 2 — (6) floating-point buffers (FLB)
- T ¥ 2 — (3) store data buffers (SDB)
' ' T ' ' ’ ' ' ' ' ¢ Out of order instruction execution:
[ovecser | — After decode the instruction unit passes all floating point instructions (in order) to
Foating Point _'_l Foating Poit the floating-point operation stack (FLOS).
v Ao — In the floating point unit, instructions are then further decoded and issued from the
I Buffers (S0B) 1 FLOS to the two FU’s
i i ¢ Variable operation latencies:
T o Sorage — Floating-point add: 2 cycles
CES 1[ED [CH L[Snc T souce] — Floating-point multiply: 3 cycles
Adder — Floating-point divide: 12 cycles
. . -
Saaiion o achiouing one instucton ner cyde i nstrection pipelime "
—— Result Bus

Dependence Mechanisms IBM 360/91 FPU

i Storage Bus Instruction Unit
Two Address IBM 360 Instruction Format: Floating Point
R1<--R1 op R2 Bufers (FLB) ——
Floating
Major dependence mechanisms: Point [¥
P ’ ; Control Operend Tags 7| Fioating Point
= Stack loating Point

¢ Structural (FU) dependence = > virtual FU’s e Bus ey

— Reservation stations T

1]

¢ True dependence = > pseudo operands + result forwarding T

— Register tags

— Reservation stations

— Common data bus (CDB)

. . TIEBE ore
* Anti-dependence = > operand copying ¥ TS] Bm?;?(sm)
CDB

— Reservation stations ; : : 4
* Output dependence = > register renaming + result forwarding ITagSi [Tag[Sourcdct]

— Register tags

— Reservation stations

— Common data bus (CDB) Common Data Bus (CDB)

2/28/2011

Reservation Stations

Used to collect operands or pseudo operands (tags).

Associate more than one set of buffering registers (control,
source, sink) with each FU, = > virtual FU’s.

Add unit: three reservation stations
Multiply/divide unit: two reservation stations

Common Data Bus (CDB)

CDB is fed by all units that can alter a register (or supply
register values) and it feeds all units which can have a
register as an operand.

Sources of CDB:

— Floating-point buffers (FLB)

— Two FU’s (add unit and the multiply/divide unit)

Destinations of CDB:

— Reservation stations

— Floating-point registers (FLR)

— Store data buffers (SDB)

Register Tags

Every source of a register value must be uniquely identified by its
own tag value.
— (6) FLB's
— (5) reservation stations (3 with add unit, 2 with multiply/divide unit)
==>4-bit tag is needed to identify the 11 potential sources

Every destination of a register value must carry a tag field.
— (5) “sink” entries of the reservation stations
— (5) “source” entries of the reservation stations
— (4)FLR's
— (3)SDB’s
==> a total of 17 tag fields are needed (i.e. 17 places that need tags)

1.

2.

Operation of Dependence Mechanisms

Structural (FU) dependence = > virtual FU’s

— FLOS can hold and decode up to 8 instructions.

— Instructions are dispatched to the 5 reservation stations (virtual FU’s) even
though there are only two physical FU’s.

— Hence, structural dependence does not stall dispatching.

True dependence = > pseudo operands + result forwarding

— Ifanoperand is available in FLR, it is copied to a res. station entry.

— Ifanoperand is not available (i.e. there is pending write), then a tag is copied to
the reservation station entry instead. This tag identifies the source of the
pending write. This instruction then waits in its reservation station for the true
dependence to be resolved.

— When the operand is finally produced by the source (ID of source = tag value),
this source unit asserts its ID, i.e. its tag value, on the CDB followed by
broadcasting of the operand on the CDB.

— All the reservation station entries and the FLR entries and SDB entries carrying
this tag value in their tag fields will detect a match of tag values and latch in the
broadcasted operand from the CDB.

— Hence, true dependence does not block subsequent independent instructions

and does not stall a physical FU. Forwarding also minimizes delay due to true
dependence.

10

2/28/2011

itR2<-RO+R4
Example 1 j:R8 <- RO+ R2 Operation of Dependence Mechanisms
CYCLE #1
3. Anti-dependence = > operand copyin
1D Tag Sink Tag Source 1D Tag Sink Tag Source BusyTag Data p p pying
% gl I I ‘[} g gg - If an operand is available in FLR, it is copied to a reservation
3 MuluDiv 1 100 station entry.
Adder 8 738 — By copying this operand to the reservation station, all anti-
DISPATCHED INSTRUCTION(S): dependences due to future writes to this same register are
CYCLE#2 resolved.
ID " ID .
X Tag Sink Tag Sourc 4|Tag‘ Sink ‘TegiSo_urce‘ OB—USYLEQE%‘— — Hence, the reading of an operand is not delayed, possibly due to
2 5] 1 |2 35 other dependences, and subsequent writes are also not delayed.
3 Mult/Div 4 10.0
Adder 8 7.8
CYCLE #3 DISPATCHED INSTRUCTION(S):
1D Tag Sink Tag Source b Tag Sink Tag Source BusyTag Data
1 4 K
2 5[] []]2
3 Mult/Div 4
Adder 8
DISPATCHED INSTRUCTION(S): 41 42
i: R4 <-RO * R8
Example 2 j:RO<- R4 * R2 Operation of Dependence Mechanisms
k:R2<-R2+R8
CYCLE#1 3. Output dependence = > register renaming + result forwarding
ID . ID .
Tag Sink Tag Sourcs 4Tﬂg Sink Tag Source BusyTal Dg‘g — Ifaregister is waiting for a pending write, its tag field will contain the 1D,
; 5I “ { I I g 3'5 or tag value, of the source for that pending write.
3 Mult/Div 4 100 — When that source eventually produces the result, that result will be
Adder 8 78 written into the register via the CDB.
CYCLE #2 DISPATCHED INSTRUCTION(S): - It is possible that prior to the completion of the pending write, another
ID N ID . instruction can come along and also has that same register as its
Tag Sink Tag Sourc Tag Sink Tag Source BusyTag Data L .
1 g;—T “ I I 0 —g—g—g— destination register.
2 2 . - If this occurs, the operands (or pseudo operands) needed by this
3 v Mult/Div g %08'0 instruction are still copied to an available reservation station. In addition,
er :

DISPATCHED INSTRUCTION(S):

CYCLE #3
1D Tag Sink Tag Source IDTa Sink Tag Source BusyTag Data
1 e 1
2 5[] [| Ii
3 Mult/Div
Adder
DISPATCHED INSTRUCTION(S): 43

the tag field of the destination register of this instruction is updated with

the ID of this new reservation station, i.e. the old tag value is overwritten.
This will ensure that the said register will get the latest value, i.e. the late
completing earlier write cannot overwrite a later write.

- Hence, the output dependence is resolved without stalling a physical
functional unit, not requiring additional buffers to ensure sequential write
back to the register file.

11

2/28/2011

i: R4 <-RO * R8
j:R2<- RO + R4 7 H
Example 3 ! Summary of Tomasulo’s Algorithm
CYCLE #1 k: R4 <- RO + R8 .) .
D D I:R8 <-R4 * R8 . Supports out of order execution of instructions.
Tag Sink Tag Source Tag Sink Tag Source BusyTag Data . .
1 4] T 1 1 0 5.0 . Resolves dependences dynamically using hardware.
2 SL [|2 35 . Attempts to delay the resolution of dependencies as late as possible.
3 Mult/Div 4 100 P y p p
Adder 8 78 . Structural dependence does not stall issuing; virtual FU’s in the form
DISPATCHED INSTRUCTION(S): of reservation stations are used.
CYCLE #2 . Output dependence does not stall issuin?_; copying of old tag to
D . D . reservation station and updating of tag field of the register with
Tag Sink Tag Sourc Tag Sink Tag Source BusyTag Data pending write with the new tag.
1 4] I | o 60
2 5] 1 | 2 35 . True dependence with a pending write operand does not stall the
3 Mult/Div 4 10.0 reading of operands; pseudo operand (tag) is copied to reservation
Adder 8 7.8 station.
CYCLE #3 DISPATCHED INSTRUCTION(S): . Anti-dependence does not stall write back; earlier copying of operand
awaiting read to the reservation station.
D . D . i
Tag Sink Tag Source Tag Sink_Tag Source BusyTag Data . Can support sequence of multiple output dependences.
1 4] 0
2 5] 1 |2 . F_?rwarding from FU’s to reservation stations bypasses the register
3 Mult/Div 4 lle.
Adder |—‘ 8
DISPATCHED INSTRUCTION(S): a5 16

Example 4 Example 4

@ 2

i: R4 <-- RO + R8 o @
3

ji R2 <- RO * R4 @ G ®)
@

ki R4 <- R4 + R8 (
@ 0 ®

(10) ®)

12

2/28/2011

Example 4
CYCLE #1

1D Tag Sink Tag Source 1D Tag Sink Tag Source BusyTag Data
1 A] | 0 60
2 51 [1] 2 2050
3 Mult/Div 4 A

Adder 8 78

DISPATCHED INSTRUCTION(S):

CYCLE #2
D Tag Sink Tag Source 1D Tag Sink Tag Source BusyTag Data
1 A] |0
2 5[] [1]2
3 Mult/Div 4

Adder
CYCLE #3 DISPATCHED INSTRUCTION(S):
1D Tag Sink Tag Source IDTag Sink Tag Source BusyTag Data
1 4 |0
2 5[1 [Ii
3 Mult/Div

[MuwDv] 4

Adder

DISPATCHED INSTRUCTION(S):

Example 4
CYCLE #4

1D Tag Sink Tag Source IDTag Sink Tag Source BusyTag Data
1 I —
2 5[1 [] Ij
3 Mult/Div

Adder 8

DISPATCHED INSTRUCTION(S):

CYCLE #5
1D Tag Sink Tag Source IDTa Sink Tag Source BusyTag Data
1 . —
2 5[] [1 |2
3 Mult/Div 4

Adder
CYCLE #6 DISPATCHED INSTRUCTION(S):
IDTa Sink Tag Source IDTag Sink Tag Source BusyTag Data
1 4 | |0
2 5[1 [] \i
3 Mult/Div

[Muwov] 4

Adder

DISPATCHED INSTRUCTION(S):

Tomasulo Revisited—H &P notation

From Mem FP Op
Queue

1 Load Buffers

Loadl
Load2
Load3
Load4
Load5

FP Reqgisters

Loadé

Store

Multl
Mult2

Reservation
Stations

Buffers

To Mem

Common Data Bus (CDB)

Reservation Station Components

Op: Operation to perform in the unit (e.g., + or -)
Vj, Vk: Value of Source operands
— Store buffers has V field, result to be stored

Qj, Qk: Reservation stations producing source registers
(value to be written)

— Note: Qj,Qk=0 => ready

— Store buffers only have Qi for RS producing result

Busy: Indicates reservation station or FU is busy

Register result status—Indicates which functional unit
will write each register, if one exists. Blank when no
pending instructions that will write that register.

13

2/28/2011

Three Stages of Tomasulo Algorithm

1. Issue—get instruction from FP Op Queue

If reservation station free (no structural hazard),
control issues instr & sends operands (renames registers).

2. Execute—operate on operands (EX)

When both operands ready then execute;
if not ready, watch Common Data Bus for result

3. Write result—finish execution (WB)

Write on Common Data Bus to all awaiting units;
mark reservation station available

* Normal data bus: data + destination (“go to” bus)
¢ Common data bus: data + source (“come from” bus)
— 64 bits of data + 4 bits of Functional Unit source address
— Write if matches expected Functional Unit (produces result)
— Does the broadcast
¢ Example speed:
3 clock cycles for Fl .pt. +,-
10 cycles for *
40 cycles for /

Tomasulo Example

Instruction status: Exec Write
Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 Loadl| No
LD F2 45+ R3 Load2 | No
MULTD FO F2 Fa Load3 | No
SUBD F8 F6 F2
DIVD FI0 FO F6
ADDD F6 F8 F2
Reservation Stations: S1 s2 RS RS
Time Name Busy Op Vj VK Qj Qk
Addl | No
Add2 | No
Add3 | No
Multl | No
Mult2 | No

Register result status:
Clock FO F2 F4 F6 F8 F10 Fi12 ... F30
o FU | |

Tomasulo Example Cycle 1

Instruction status: Exec Write
Instruction j k gweey Comp Result
LD F6 34+ R2 1
LD F2 45+ R3

MULTD FO F2 Fa
SuBD F8 F6 F2
DIVD F10 FO F6
ADDD F6 F8 F2

Reservation Stations: S1 s2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Addl [No

Add2 | No

Add3 | No

Multl | No

Mult2 [No

Register result status:

Clock FO F2 F4pkbe F8 F10 F12 .. F30
1 FU | | Loadl
—J

Tomasulo Example Cycle 2

Instruction status: Exec Write
Instruction j k _Issue _Comp Result
LD F6 34+ R2

LD F2 45+ R3
MULTD FO F2 Fa
sSuBD F8 F6 F2
DIVD FAC FO F6
ADDD F6 F8 F2

Reservation Stations: S1 s2 RS RS
Time Name Busy Op Vj Vk Qj Qk

Add1 [No

Add2 | No

Add3 | No

Multl | No

Mult2 | No

Register result status:

Clock FOp=F#= F4 F6 F8 F10 F12 .. F30
2 FU | | Load2] Loadl |
—

Note: Can have multiple loads outstanding

14

2/28/2011

Tomasulo Example Cycle 3

Instruction status: Exec Write
Instruction i k Issue Result Busy Address
LD F6 34+ R2 1 Load1
LD F2 45+ R3 2 Load2
MULTD FO F2 F4 3 Load3
SUBD F8 F6 F2
DIVD F10 FO F6
ADDD F6 F8 F2
Reservation Stations: S1 s2 RS RS
Time Name Busy Op Vij Vk Qj Qk
Addl [No
Add2 | No
Add3
Mulql Yes MULTD R(F4) Load2]
Mult:
Register result status:
Clock = F2 F4 F6 F8 F10 F12 .. F30
3 FUf[Mult1 J1 oad2 Load1l |

¢ Note: registers names are removed (“renamed”) in Reservation Stations;
MULT issued

¢ Loadl completing; what is waiting for Load1?

Tomasulo Example Cycle 4

Instruction status: Exec Write
Instruction j k _Issue Comp
LD F6 34+ R2
LD F2 45+ R3
MULTD FO F2 Fa
SUBD F8 F6 F2
DIVD F10 FO F6
ADDD F6 F8 F2

Busy Address

Tomasulo Example Cycle 5

Instruction status: Exec Write
Instruction j k _Issue Comp Result Bu Address
LD F6 34+ R2 1 3 4 Load1
LD F2 45+ R3 2 4 5 Load2
MULTD FO F2 F4 3 Load3
SUBD F8 F6 F2 4
DIVD F10 FO F6 5
ADDD F6 F8 F2
Reservation Stations: S1 s2 RS RS

ime [Name Busy Op Vi i Qj Qk
2JAdd1 [Yes SUBD M(AL{M(A)
IAdd2 | No
Add3 | No
10jMultl | Yes MULTO

R(F4)

Mult2 | Yes DIVD M(AL) Multl
Register result status:
Clock FO F2 F4 F6 F8 F10 F12 .. F30
5 FU [Multl M(A2) M(AL) Addl Muli2]

e Timer starts down for Add1, Multl

Reservation Stations: RS
Time Name BLlS\ Ol
Addlf Yes SUBD M(A1) Load2|]
Add2 | No
Add3 | No
Multl | Yes MULTD R(F4) Load2
Mult2 | No
Register result status:
Clock FO F2 F4 F6 F8 F10 Fi12 F30
4 FU [Multl Load2 M(A1) Addi |
e Load2 completing; what is waiting for Load2?
Tomasulo Example Cycle 6
Instruction status: Exec Write
Instruction j k _Issue _Comp Result Busy Address
LD F6 34+ R2[1 3 4
LD F2 45+ R3| 2 4 5
MULTD FO F2 F4 3
SuBD F8 F6 F2 4
DIVD F10 FO F6
aoop Fe F8 F2f6)
—
Reservation Stations: S1 s2 RS RS
Time Name Busy Op Vj Vk Qj Qk
1 Add1 Sl MCAL ML)
Addz|| Yes ADDD M(A2) Addl]
Add3'| NG
9 Multl | Yes MULTD M(A2) R(F4)
Mult2 | Yes DIVD M(AL) Multl
Register result status:
Clock FO F2 F4 F6 F8 F10 F12 F30
6 FU [Multl M(A2) Add2 Addl Mult2]
¢ Issue ADDD here despite name dependency on F6?
o

15

2/28/2011

Tomasulo Example Cycle 7

Instruction status: Exec Write
Instruction i k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Loadl
LD F2 45+ R3 2 4 5 Load2
MULTD FO F2 F4 3 Load3
SUBD F8 F6 F2 4
DIVD F10 FO F6 5
ADDD F6 F8 F2 6
Reservation Stations: S1 s2 RS RS

Time Name Busy Op Vij Vk Qj Qk
0Addl [Yes SUBD M(AL) M(A2)
Add2 | Yes ADDD M(A2) Addl
Add3 | No
8 Multl | Yes MULTD M(A2) R(F4)
Mult2 | Yes DIVD M(A1) Multl

Register result status:
Clock FO F2 F4 F6 F8 F10 Fi12

F30

7 FU | Multl M(A2) Add2 Addl Mult2

e Add1 (SUBD) completing; what is waiting for it?

Tomasulo Example Cycle 8

Tomasulo Example Cycle 9

Instruction status: Exec Write
Instruction j k _Issue Comp Result Bu Address
LD F6 34+ R2 1 3 4 Load1
LD F2 45+ R3 2 4 5 Load2
MULTD FO F2 F4 3 Load3
SUBD F8 F6 F2 4 7 8
DIVD F10 FO F6 5
ADDD F6 F8 F2 6
Reservation Stations: S1 s2 RS RS
Time Name Busy Op Vj Vk Qj Qk
Addl [No
1 Add2 | Yes ADDD (M-M) M(A2)
Add3 | No
6 Multl | Yes MULTD M(A2) R(F4)
Mult2 | Yes DIVD M(A1) Multl
Register result status:
Clock FO F2 F4 F6 F8 F10 Fi2

F30

9 FU [Multl_M(A2) Add2 (M-M) Muli2

Instruction status: Exec Write
Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4
LD F2 45+ R3 2 4 5
MULTD FO F2 F4 3
SUBD F8 F6 F2 4 7 8
DIVD F10 FO F6 5
ADDD F6 F8 F2 6
Reservation Stations: RS RS
Time Name Busy Op Qj Qk
Add1 [No
2 Add2 | Yes ADDD
Add3 | No
7 Multl | Yes MULTD M(A2) R(F4)
Mult2 | Yes DIVD M(A1) Multl
Register result status:
Clock FO F2 F4 F6 _F8 F10 Fi12 F30
8 FU [Multl M(A2) Add2f (M-l Mul2 |
62
Tomasulo Example Cycle 10
Instruction status: Exec Write
Instruction j k _Issue _Comp Result Busy Address
LD F6 34+ R2 1 3 4
LD F2 45+ R3 2 4 5
MULTD FO F2 F4 3
SuBD F8 F6 F2 4 7 8
DIVD F10 FO F6 5
ADDD F6 F8 F2 6 10
Reservation Stations: S1 s2 RS RS
Time Name Busy Op Vj Vk Qj Qk
Add1 [No
0 Add2 | Yes ADDD (M-M) M(A2)
Add3 | No
5 Multl | Yes MULTD M(A2) R(F4)
Mult2 | Yes DIVD M(AL) Multl
Register result status:
Clock FO F2 F4 F6 F8 F10 Fi12 F30
10 FU [Multl M(A2) Add2 (M-M) Mult2]
¢ Add2 (ADDD) completing; what is waiting for it?
64

16

2/28/2011

Tomasulo Example Cycle 11

Instruction status: Exec Write
Instruction i k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Loadl
LD F2 45+ RS 2 4 5 Load2
MULTD FO F2 Fa 3 Load3
SUBD F8 F6 F2 4 7 8
DIVD F10 FO F6 5
ADDD F6 F8 F2 6 10 11
Reservation Stations: S1 s2 RS RS
Time Name Busy Op Vij Vk Qj Qk
Addl | No
Add2 | No
Add3 | No

4 Multl | Yes MULTD M(A2) R(F4)
Mult2 | Yes DIVD M(A1) Multl

Register result status:
Clock FO F2 F4__F6__F8 F10 Fi12

F30

11 FU [Multl M(A2) I (M-M+NEM-M) Mult2

e Write result of ADDD here?
o All quick instructions complete in this cycle!

Tomasulo Example Cycle 12

Instruction status: Exec Write
Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4
LD F2 45+ R3 2 4 5
MULTD FO F2 Fa 3
SUBD F8 F6 F2 4 7 8
DIVD FI0 FO F6 5
ADDD F6 F8 F2 6 10 11
Reservation Stations: S1 s2 RS RS
Time Name Busy Op Vj VK Qj Qk
Addl | No
Add2 | No
Add3 | No

3 Multl | Yes MULTD M(A2) R(F4)

Tomasulo Example Cycle 13

Instruction status: Exec Write
Instruction j k _Issue Comp Result Bu Address
LD F6 34+ R2 1 3 4 Load1
LD F2 45+ R3 2 4 5 Load2
MULTD FO F2 F4 3 Load3
SUBD F8 F6 F2 4 7 8
DIVD F10 FO F6 5
ADDD F6 F8 F2 6 10 11
Reservation Stations: S1 s2 RS RS
Time Name Busy Op Vj Vk Qj Qk
Addl [No
Add2 | No
Add3 | No
2 Multl | Yes MULTD M(A2) R(F4)
Mult2 | Yes DIVD M(A1) Multl
Register result status:
Clock FO F2 F4 F6 F8 F10 Fi2

F30

13 FU [Multl_M(A2) (M-M+N (M-M) Mult2

Mult2 | Yes DIVD M(A1) Multl
Register result status:
Clock FO F2 F4 F6 F8 F10 Fi12 F30
12 FU [Multl M(A2) (M-M+N (M-M) Mult2 |
66
Tomasulo Example Cycle 14
Instruction status: Exec Write
Instruction j k _Issue _Comp Result Busy Address
LD F6 34+ R2 1 3 4
LD F2 45+ R3 2 4 5
MULTD FO F2 F4 3
SuBD F8 F6 F2 4 7 8
DIVD F10 FO F6 5
ADDD F6 F8 F2 6 10 11
Reservation Stations: S1 s2 RS RS
Time Name Busy Op Vj Vk Qj Qk
Add1 [No
Add2 | No
Add3 | No
1 Multl | Yes MULTD M(A2) R(F4)
Mult2 | Yes DIVD M(AL) Multl
Register result status:
Clock FO F2 F4 F6 F8 F10 Fi12 F30
14 FU [Multl M(A2) (M-M+N (M-M) Mult2 |
68

17

2/28/2011

Tomasulo Example Cycle 15

Tomasulo Example Cycle 16

Instruction status: Exec Write Instruction status: Exec Write
Instruction i k Issue Comp Result Busy Address Instruction j k Issue Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 LD F6 34+ R2 1 3 4
LD F2 45+ R3 2 4 5 Load2 LD F2 45+ R3 2 4 5
MULTD FO F2 F4 3 15 Load3 MULTD FO F2 F4 3 15 16
SUBD F8 F6 F2 4 7 8 SUBD F8 F6 F2 4 7 8
DIVD F10 FO F6 5 DIVD F10 FO F6 5
ADDD F6 F8 F2 6 10 11 ADDD F6 F8 F2 6 10 11
Reservation Stations: S1 s2 RS RS Reservation Stations: S1 s2 RS RS
Time Name Busy Op Vij Vk Qj Qk Time Name Busy Op Vj VK Qj Qk
Add1 [No Add1 [No
Add2 | No Add2 | No
Add3 | No Add3 | No
0 Multl | Yes MULTD M(A2) R(F4) Multl | No
Mult2 | Yes DIVD M(A1) Multl 40 Mult2 | Yes Divo [VeFa M(a1)
Register result status: Register result status:
Clock FO F2 F4 F6 F8 F10 Fi12 F30 Clock FO__F2 F4 F6 F8 F10 Fi12 F30
15 FU [Multl M(A2) (M-M+N (M-M) Mult2 | 16 FU [M*FamA2) (M-M+N (M-M) Mult2 |
e Multl (MULTD) completing; what is waiting for it? o Just waiting for Mult2 (DIVD) to complete
9 70
Tomasulo Example—Skip ahead to Cycle 55 Tomasulo Example Cycle 56
Instruction status: Exec Write Instruction status: Exec Write
Instruction j k _Issue Comp Result Bu Address Instruction j k _Issue _Comp Result Busy Address
LD F6 34+ R2 1 3 4 Load1 LD F6 34+ R2 1 3 4
LD F2 45+ R3| 2 4 5 Load2 LD F2 45+ R3 2 4 5
MULTD FO F2 F4 3 15 16 Load3 MULTD FO F2 F4 3 15 16
SuBD F8 F6 F2 4 7 8 sSuBD F8 F6 F2 4 7 8
DIVD F10 FO F6 5 DIVD F10 FO Fé 5 56
ADDD F6 F8 F2 6 10 11 ADDD F6 F8 F2 6 10 11
Reservation Stations: S1 S22 RS RS Reservation Stations: S1 s2 RS RS
Time Name Busy Op Vj Vk Qi Qk Time Name Busy Op Vj Vk Qj Qk
Add1 [No Add1 [No
Add2 | No Add2 | No
Add3 | No Add3 | No
Multl | No Multl | No
1Mult2 | Yes DIVD M*F4_M(AL) 0Mult2 | Yes DIVD M*F4_M(AL)
Register result status: Register result status:
Clock FO F2 F4 F6 F8 F10 Fi12 F30 Clock FO F2 F4 F6 F8 F10 Fi12 F30
55 FU [M*F4_M(A2) (M-M+N (M-M) Mult2 56 FU [M*F4_M(A2) (M-M+N (M-M) Mult2 |
e Mult2 (DIVD) is completing; what is waiting for it?
7 72

18

2/28/2011

Tomasulo Example Cycle 57

Instruction status: Exec Write
Instruction j k (5503 Comp Resgit Busy Address
LD F6 34+ R2 1 3 4 Loadl| No
LD F2 45+ R3 2 5 Load2 | No
MULTD FO F2 F4 3 15 16 Load3 |_No
SUBD F8 F6 F2 4 7 8
5 56 57
ADDD F6 F8 F2 6 10 11
. . = = =
Reservation Stations: S1 S2 RS RS
Time Name Busy Op Vi Vk Qj Qk
Addl [No
Add2 | No
Add3 | No
Multl | No
Mult2 | Yes M*F4_M(AL)
Register result status:
Clock FO F2 F4 F6 F8 F10 F12 .. F30
56 FU [M*F4_M(A2) (M-M)

e Once again: In-order issue, out-of-order execution and out-of-
order completion.

Why can Tomasulo overlap iterations

of loops?

Register renaming

— Multiple iterations use different physical destinations for registers
(dynamic loop unrolling).

Reservation stations

- Permit.instruction issue to advance past integer control flow
operations

— Also buffer old values of registers - totally avoiding the WAR stall

Other perspective: Tomasulo building data flow

dependency graph on the fly

Tomasulo’s scheme offers Two major
advantages

1. Distribution of the hazard detection logic
— distributed reservation stations and the CDB
— If multiple instructions waiting on single result, & each instruction has
other operand, then instructions can be released simultaneously by
broadcast on CDB
— If a centralized register file were used, the units would have to read
their results from the registers when register buses are available

2. Elimination of stalls for WAW and WAR hazards

Tomasulo Drawbacks

e Complexity
¢ Many associative stores (CDB) at high speed
* Performance limited by Common Data Bus

— Each CDB must go to multiple functional units
—=high capacitance, high wiring density
— Number of functional units that can complete per cycle limited to one!
¢ Multiple CDBs = more FU logic for parallel assoc stores

* Non-precise interrupts!

— We will address this later

19

2/28/2011

Dynamic Scheduling--Conclusions Dynamic Scheduling—Conclusions (cont.)

. Leverage Implicit Parallelism for Performance: ¢ Reservations stations: renaming to larger set of registers + buffering
Instruction Level Parallelism SOUrCe OPErands e

* Loop unrolling by compiler to increase ILP AR

* Branch prediction to increase ILP * Not limited to basic blocks

(integer unit gets ahead, beyond branches)

* Dynamic HW exploiting ILP + Helps cache misses as well
— Works when can’t know dependence at compile * Lasting Contributions
time — Dynamic scheduling
— Can hide L1 cache misses — Register renaming

— Load/store disambiguation

* 360/91 descendants are Intel Pentium 4, IBM Power 5, AMD
Athlon/Opteron, ...

— Code for one machine runs well on another

Performance Enhancement—Better Branch Static Branch Prediction
Prediction ¢ Earlier, we discussed scheduling code around delayed branch
¢ To reorder code around branches, need to predict branch
Lo statically at compile time
* Accurate Branch Prediction becomes more * Simplest scheme is to predict a branch as taken
Importa nt Wlth dyna mic SChed u”ng — Average misprediction = untaken branch frequency = 34% SPEC
25% - 22%
— Dynamic scheduling may stall if it can’t look past * More accurate - 16%
b h . scheme predicts 8 20% - ° ,
ranc pomts branches using 5 15% —1p0 1204 1
_ profile information . 11% 7 10%
Cost of misprediction may be high collected from £ 10w o
earlier runs, and ;-, 4% e%
modify prediction s 5%- |:|
based on last run: 0% I i i I:I . . i
o o N ¢ B QO K S
&éee 5 & LS 60& < @.&o @b\\b 9\;159
& <
Integer Floating Point
80

20

2/28/2011

Dynamic (Run-time) Branch Prediction

* Why does prediction work?
— Underlying algorithm has regularities
— Data that is being operated on has regularities
— Instruction sequence has redundancies that are
artifacts of way that humans/compilers think about
problems
* |Is dynamic branch prediction better than static
branch prediction?
— Seems to be (most modern processor use it)

— There are a small number of important branches in
programs which have dynamic behavior

Dynamic Branch Prediction

Simplest Dynamic Predictor:
Branch History Table: Lower bits of PC address index table of 1-bit
values

Keeps track of whether or not branch taken last time

No address check

[—
2BHT |
entries

k bit BHT address
0=Not Taken
1=Taken

Problem: in a loop, 1-bit BHT will cause two mispredictions (average
loop has only 9 iterations before exit):
End of loop case, when it exits instead of looping as before
First time through loop on next time through code, when it predicts
exit instead of looping

81 82
Multi-bit Branch History A two-bit branch predictor
¢ Change prediction only if get misprediction twice
n-bit branch history T
——
11...10 NT
ég:::gg Predict Taken Predict Taken
010 — T T NT
2BHT 0,00 I NT
entries { Predict Not Predict Not
: K bit BHT address Taken T Taken
11..00
] mlv18 NT
* Adds hysteresis to decision making process
In general, there is little performance improvement ¢ Many other two-bit prediction schemes are possible
Beyond n=2
84

21

2/28/2011

Another two-bit branch predictor

¢ Two-bit saturating counter (Smith Predictor)

T
m .
Predict Taken = Predict Taken
T NT
Predict Not
Taken NT Predict Not
T Taken

NT

85

2-bit BHT Table Predictor Accuracy

e Causes of Misprediction:
— Wrong guess for that branch

— Got branch history of wrong branch when index the table
(aliasing, due to limited table size)

e 4096 entry table:

20% - 18%
18% —
16% —
14% —
12% —
10% -
8% —
6% — &
awo | -4 -tk -l -1t ---~-
206 —
0%

9% 9% 9%

Misprediction Rate

3 A 3 A
& P ¢ & &
& &0 & EF S
2
<
Integer Floating Point 86

Correlated Branch Prediction

Idea: track the outcome of the m most recently executed
branches (globally), and use that pattern to select the proper
n-bit branch history table

In general, (m,n) predictor means use last m (global) branch
outcomes to select between 2™ history tables, each with n-bit
counters

— Thus, old 2-bit BHT is a (0,2) predictor

Global Branch History: m-bit shift register keeping T/NT status
of last m branches.

Each entry in table has m n-bit predictors (local branch
history).

87

Example: A (2,2) Branch Predictor

(2,2) predictor —

— Behavior of recent
branches selects
between four
predictions of next
branch, updating just === Prediction
that prediction (based upon

two-bit FSM)

2-bits per branch predictor

2-bit global branch history

88

22

2/28/2011

Branch Pred|ctor Accuracy Tournament Branch PredICtOI‘
¢ Multilevel branch predictor
:Z: 4096 Entries 2-bit BHT ¢ Use n-bit saturating counter to choose between predictors
16% Unlimited Entries 2-bit BHT . .
Lo 1024 Entries (2,2) BHT ¢ Usual choice between global and local predictors
e —~
0= mispredict i;og — I' GD o

1= correct predict

) -

Frequency of Mispredictions

% 8 2 B] g 8 2 g = e
g E g
[=°4,096 entries: 2-bits per entry ® Unlimited entries: 2-bits/entry ® 1,024 entries (2.2) | =22 2
89 © 2003 Elsevier Sconce (USA) Al nghis resenved 90
Branch Predictor Performance as a Function of Pentium 4 Misprediction Rate
Size (total # of Bits) (per 1000 instructions, not per branch)
(SPEC89 Benchmarks) . = ~6% misprediction rate per branch SPECint
- (19% of INT instructions are branch)
gl H ~2% misprediction rate per branch SPECfp
. tk% § b (5% of FP instructions are branch)
Local 2.1 prodiciors 2
. Q9
El
o ¢ 5"
\ 3
T s ' B R
» == g°
" \“__ Carplating prodiciors 3 s
. o Toumasnont prodiclors g N
' e neR
B = M s 81 410 448 40 512 :
@’&f »‘”ﬁ s @‘&\ $,fz «f@ o 4 @f Nf
¢ R K
91 SPECint2000 SPECfp2000 92

23

2/28/2011

Branch Prediction—What about the Branch
Target Address(BTA)?

¢ Branch Prediction is of no value unless we know the BTA

¢ Branch target calculation is costly and stalls the
instruction fetch.

¢ A Branch Target Buffer (BTB) can store previously
computed BTAs

¢ The BTA of a taken branch is stored in the BTB

¢ For subsequent executions of this branch, the BTA can be

“looked up” in the BTB

o If the branch was predicted taken, instruction fetch

continues at the predicted PC

93

Branch Target Buffer (BTB)

Jock s Prodicied PC

= = = et precicted 1o bo Beanch
Eranch; procesd normally predictec
taken o

Yos: then instnzction is branch and predicted untakon

PG shoudd b used 8 the next PG

Often, BTB is used in conjunction with Dynamic Prediction
* BTB provides fast prediction and BTA in fetch stage
* Dynamic Predictor provides more accurate prediction in decode stage

9

BTB Flowchart

Branch Prediction Summary

¢ Dynamic Prediction is essential in modern high-performance
processors
¢ Branch History Table: 2 bits for loop accuracy
¢ Correlation: Recently executed branches correlated with next
branch
¢ Tournament predictors take insight to next level, by using
multiple predictors
— usually one based on global information and one based on
local information, and combining them with a selector
— Tournament predictors using ~ 30K bits are in processors
like the Power5 and Pentium 4
¢ Branch Target Buffer: include branch address & prediction

96

24

